期刊文献+

强跟踪渐进更新扩展卡尔曼滤波器及其在磁偶极子跟踪中的应用 被引量:1

Strong tracking progressive extended Kalman filter and its application in magnetic dipole tracking
下载PDF
导出
摘要 为了改善实际跟踪过程中因为缺乏目标先验信息造成的模型失配对滤波器跟踪性能造成的影响,引入强跟踪滤波(STF)思想对渐进更新扩展Kalman滤波(PU-EKF)算法进行改进,提出了强跟踪渐进更新扩展Kalman滤波(STPU-EKF)算法。在多种模型失配情况下进行磁偶极子跟踪仿真试验,对所建算法的性能进行验证,仿真结果表明:所建立的STPU-EKF算法兼具PU-EKF和STF算法的优点,具有较高的准确性和较好的鲁棒性。 In view of the influence of model mismatch caused by lack of prior information of the target on the tracking performance of the filter in the actual tracking process,the idea of strong tracking filtering(STF)was introduced to improve the asymptotic extended Kalman filtering algorithm,and hence a strong tracking asymptotic extended Kalman filtering(STPEKF)algorithm was proposed.The performance of the proposed algorithm was verified by magnetic dipole tracking simulation test under various model mismatches.The simulation results show that the STPEKF algorithm has the advantages of both PEKF and STF algorithms,with high accuracy and good robustness.
作者 单珊 周穗华 戴忠华 张宏欣 SHAN Shan;ZHOU Sui-hua;DAI Zhong-hua;ZHANG Hong-xin(College of Weaponry Engineering, Naval Univ. of Engineering, Wuhan 430033, China;Unit No. 91439, Dalian 116041, China)
出处 《海军工程大学学报》 CAS 北大核心 2022年第1期105-112,共8页 Journal of Naval University of Engineering
关键词 目标跟踪 模型失配 强跟踪滤波器 鲁棒性 target tracking model mismatch strong tracking filter robust
  • 相关文献

参考文献8

二级参考文献61

  • 1周东华,控制与决策,1990年,5卷,1页 被引量:1
  • 2邓自立,王建国.非线性系统的自适应推广的Kalman滤波[J]自动化学报,1987(05). 被引量:1
  • 3James C. Bayesian siganl processing[M]. Hoboken: John Wiley&Son Press, 2009: 3-10. 被引量:1
  • 4Simon J, Jeffery U, Hugh D. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-481. 被引量:1
  • 5Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans on Automatic Control, 2009, 56(6): 1254-1269. 被引量:1
  • 6Rudolph M. Sigma-Point Kalman filters for probabilistic inference in dynamic state-space models[D]. Oregon: Oregon Health & Science University, 2004: 251-256. 被引量:1
  • 7Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proc F: Radar and Signal Processing, 1993, 140(2): 107- 113. 被引量:1
  • 8Fred D. Nonlinear filters: Beyond Kalman filter[J]. IEEE Aero Elec Systems Magzine, 2005, 43(8): 57-69. 被引量:1
  • 9Rudolph M. The unscented particle filter[R]. Cambridge: Cambridge University, 2000. 被引量:1
  • 10Daum E Coulomb's law particle flow for nonlinear filter[C]. Proc of SPIE on Signal Processing and Sensor Fusion. San Diego, 2011: 3351-3362. 被引量:1

共引文献337

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部