摘要
研究了线性多胞体微分包含解的通有稳定性.应用集值分析方法,证明了线性多胞体微分包含关于右端部分及其初始值发生扰动时对应的解具有通有稳定性,即在Baire纲意义下大多数线性多胞体微分包含具有本质解.
The generic stability of differential inclusions of linear polytopes is studied.Through set-valued analysis,we prove that the differential inclusions of the linear polytopes have generic stability with respect to perturb parts of the right and initial pair of linear polytopes;that is,most of differential inclusions of linear polytopes have essential solution in the Baire category.
作者
计伟
JI Wei(School of Information and Management, Guizhou Polytechnic of Construction, Guiyang 551400, China)
出处
《吉首大学学报(自然科学版)》
CAS
2021年第5期8-11,共4页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(11661020)。
关键词
线性多胞体
微分包含
集值映射
通有稳定性
本质解
linear polytopes
differential inclusions
set-valued mapping
generic stability
essential solution