摘要
制备了5,10,15,20-四(苯基)卟啉钴配合物(CoTPP),并利用该配合物与氧化石墨烯(GO)的π-π堆积作用组装了CoTPP/GO电催化产氢复合材料.研究发现,当CoTPP与GO的质量比为1∶15时,复合材料的性能最佳.该材料的拉曼和扫描电子显微镜结果显示,与GO相比,CoTPP/GO复合材料表面的无序程度增加,形貌改变有利于促进反应体系的电荷迁移与分离;交流阻抗测试结果显示,阻抗值由GO的1180Ω降低为Co TPP/GO材料的734Ω;电化学测试结果显示,析氢起始过电位由-761 mV降低为-337 mV,塔菲尔斜率由296 mV/dec降低至174 mV/dec,法拉第效率却由23%提高至87%.加入二苯硫醚(SPh_(2))轴向配体后,CoTPP(SPh_(2))/GO材料的析氢起始过电位进一步降低至-235 mV,塔菲尔斜率降低至163 mV/dec,法拉第效率提高至94%.研究结果表明,通过氧化石墨烯与金属卟啉的非共价键自组装是构筑石墨烯基电催化产氢材料的一个有效途径.
5,10,15,20-tetraphenyl porphyrin cobalt complex(CoTPP)was synthesized and used to prepare metalloporphyrin graphene oxide(GO)composite for electrocatalytic hydrogen evolutionreaction(HER).The results indicated that when the mass ratio of CoTPP to GO is 1∶15,the performance of the composite is the best.The test of Raman and SEM revealed that the surface disorder of CoTPP/GO material was increased as compared to GO.This change is beneficial for the charge transfer of the HER.EIS test results showed the resistance of GO was reduced from 1180Ωto 734Ωof CoTPP/GO.The HER onset overpotential of material was reduced from−761 mV of GO to−337 mV of CoTPP/GO.Tafel slope was reduced from 296 mV/dec of GO to 174 mV/dec of CoTPP/GO,while the Faraday efficiency was increased from 23%to 87%.After adding diphenyl sulfide(SPh_(2))axial ligand,the HER onset overpotential of CoTPP(SPh_(2))/GO material was further reduced to−235 mV.Tafel slope was also reduced to 163 mV/dec and Faraday efficiency was increased to 94%.These results indicate that the self-assembly of graphene oxide and metalloporphyrin is an effective way to construct graphene-based metalloporphyrin electrocatalytic HER materials.
作者
俞彬
谌小燕
赵越
陈卫昌
肖新颜
刘海洋
YU Bin;CHEN Xiaoyan;ZHAO Yue;CHEN Weichang;XIAO Xinyan;LIU Haiyang(School of Chemistry and Chemical Eengineering,Key Laboratory of Fuel Cell Technology of Guangdong Province,South China University of Technology,Guangzhou 510641,China)
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
2022年第2期21-27,共7页
Chemical Journal of Chinese Universities
基金
国家自然科学基金(批准号:21671068,21878115)资助。
关键词
卟啉
钴
电催化析氢
自组装
氧化石墨烯
Porphyrin
Cobalt
Electrocatalytic hydrogen evolution
Self-assembly
Graphene oxide