期刊文献+

术前预测胰腺癌分化程度的临床-影像组学模型的建立和验证 被引量:1

Establish and validation of a clinical-radiomics model for preoperative prediction of the differentiation degree of pancreatic cancer before operation
下载PDF
导出
摘要 目的:建立预测胰腺癌分化程度的临床-影像组学模型,并在独立队列中进行验证。方法:收集56例经病理学检查确诊为胰腺癌的患者。基于MaZda将整个病灶作为感兴趣区(region of interest,ROI),采用软件自带的3种提取方式提取共计30个影像组学特征,并去除重复的特征。然后对影像组学特征进行检测,剔除高共线性特征。依据正态性检验,分别行独立样本t检验和Mann-Whitney U检验。再联合临床指标糖类抗原(carbohydrate antigen,CA)19-9,构建临床-影像组学预测模型。结果:特征Teta2和S(1,0)Entropy在高、中低分化组胰腺癌中存在显著差异,曲线下面积(area under curve,AUC)分别为0.68和0.70。两者联合得到的AUC为0.74。联合肿瘤标志物CA19-9建立的临床-影像组学模型的AUC为0.82,该临床-影像组学模型在验证组中同样获得了较好的诊断效力(AUC为0.78)。结论:联合影像组学特征和临床指标构建的临床-影像组学预测模型可辅助评判胰腺癌分化程度。 Objective:To establish a clinical-radiomics prediction model for the differentiation degree of pancreatic cancer,and verify its performance in an independent cohort.Methods:Fifty-six patients diagnosed with pancreatic cancer by pathological examination were collected.Based on MaZda,whole-lesion region of interest(ROI)was placed to extract radiomics features,and a total of 30 radiomics features were extracted using three extraction methods,and duplicate radiomics features were removed.Then the high-collinearity features were removed from the radiomics feature detection.According to the normality test,independent sample t test and Mann-Whitney U test were performed,respectively.Then,combined with the clinical indicator carbohydrate antigen(CA)19-9,a clinical-image prediction model was constructed.Results:Teta2 and S(1,0)Entropy differed significantly between highly and moderately-poorly differentiated groups,and area under curve(AUC)was 0.68 and 0.70,respectively.The AUC obtained by the combination of Teta2 and S(1,0)Entropy was 0.74.The AUC of the clinical-radiomics mode which integrated CA19-9 was 0.815.In the validation group,the clinical-radiomics model also achieved good diagnostic performance(AUC=0.78).Conclusion:The clinical-radiomics prediction model based on texture features and clinical classic indicators might be helpful for predicting the differentiation degree of pancreatic cancer.
作者 刘敏 周倩 吴雅蔚 臧秀 费孝静 侯锦路 叶德华 LIU Min;ZHOU Qian;WU Yawei;ZANG Xiu;FEI Xiaojing;HOU Jinlu;YE Dehua(Department of Radiology,Xuyi People’s Hospital,Huaian 223000,Jiangsu Province,China;Department of Gastroenterology,Ehu Branch of Xishan People’s Hospital,Wuxi 214000,Jiangsu Province,China;Department of Radiology,Yancheng No.1 People’s Hospital,Yancheng 224000,Jiangsu Province,China)
出处 《肿瘤影像学》 2022年第1期64-68,共5页 Oncoradiology
关键词 胰腺癌 分化程度 术前预测 影像组学 Pancreatic cancer Differentiation degree Preoperative prediction Radiomics
  • 相关文献

参考文献8

二级参考文献60

  • 1王中秋,黎介寿,卢光明,张新华.胰腺癌的CT增强和瘤体微血管密度及病理分级的相关性研究[J].中华医学杂志,2003,83(21):1882-1886. 被引量:29
  • 2朱玉春,周伟,张怀信,王建良,沈纪芳.胰腺癌瘤体强化程度与其恶性度的对照分析[J].中国医学影像技术,2007,23(11):1676-1679. 被引量:5
  • 3Bottcher J,Hansch A,Pfeil A,et al.Detection and classification of different liver lesions:comparison of Gd-EOB-DTPAenhanced MRI versus multiphasic spiral CT in a clinical single centre investigation.Eur J Radiol,2013,82(11):1860-1869. 被引量:1
  • 4Halavaara J,Breuer J,Ayuso C,et al.Livertumor characterization:comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT-a multicenter trial.J Comput Assist Tomogr,2006,30(3):345-354. 被引量:1
  • 5Ros PR,Mortele KJ.Hepatic imaging.An overview.Clin Liver Dis,2002,6(1):1-16. 被引量:1
  • 6Van Leeuwen MS,Noordzij J,Feldberg MA,et al.Focal liver lesions:characterization with triphasic spiral CT.Radiology,1996,201(2):327-336. 被引量:1
  • 7Castellano G,Bonilha L,Li LM,et al.Texture analysis of medical images.Clin Radiol,2004,59(12):1061-1069. 被引量:1
  • 8Hahn S,Heusner T,Zhou X,et al.Computer-aided detection(CAD)and assessment of malignant lesions in the liver and lung using a novel PET/CT software tool:initial results.Rofo,2010,182(3):243-247. 被引量:1
  • 9House MJ,Bangma SJ,Thomas M,et al.Texture-based classification of liver fibrosis using MRI.J Magn Reson Imaging,2015,41(2):322-328. 被引量:1
  • 10Virmani J,Kumar V,Kalra N,et al.Neural network ensemble based CAD system for focal liver lesions from b-mode ultrasound.J Digit Imaging,2014,27(4):520-537. 被引量:1

共引文献102

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部