期刊文献+

集成学习在电网假数据入侵检测中的应用 被引量:3

Application of integrated learning in the intrusion detection of power grid false data
下载PDF
导出
摘要 人工智能和机器学习的发展为入侵电网数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的虚假数据检测,提供了新的高效解决方案.目前,针对运用机器学习中的单分类器对电网中虚假数据的检测,出现的准确率低、误检率高、模型区分能力差等问题,提出了一种基于集成学习的检测方法对电网数据进行二分类,以GBDT(gradient boosting decision tree)、XGBoost、LightGBM、RF-LightGBM和Bagging分类器为基分类器,经过贝叶斯调参后,最后通过投票策略进行集成.集成学习在融合各分类器优点的同时,不仅降低了检测的误检率还提高了检测准确率及模型区分能力的稳定性.经实验对比分析,该算法在数据检测领域具有一定的应用和借鉴价值. The development of artificial intelligence and machine learning provides a new and efficient solution for the false data detection of supervisory control and data acquisition(SCADA)system.At present,using single classifier in machine learning to detect the false data in power grid has some problems,such as low accuracy,high false detection rate,poor model differentiation ability and so on.This paper proposes a detection method based on ensemble learning to binary classify the power grid data,such as gradient boosting decision tree,XGBoost,LightGBM,RF-LightGBM and so on.Bagging classifier is used as the base classifier.After Bayesian parameter adjustment,the voting strategy is used to integrate.Ensemble learning not only integrates the advantages of each classifier,but also reduces the false detection rate,and improves the detection accuracy and the stability of model distinguishing ability.The experimental results show that the algorithm has certain application and reference value in the field of data detection.
作者 戚元星 崔双喜 QI Yuanxing;CUI Shuangxi(School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2022年第1期105-112,共8页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(51667020) 新疆大学自然科学基金资助项目(BS160246)。
关键词 SCADA系统 集成学习 贝叶斯调参 入侵检测 SCADA system integrated learning Bayesian parameter adjustment intrusion detection
  • 相关文献

参考文献8

二级参考文献213

  • 1朱良根,张玉清,雷振甲.DoS攻击及其防范[J].计算机应用研究,2004,21(7):82-84. 被引量:20
  • 2李强,周京阳,于尔铿,刘树春,王磊.基于混合量测的电力系统状态估计混合算法[J].电力系统自动化,2005,29(19):31-35. 被引量:57
  • 3吴军基,杨伟,葛成,赵彤.基于GSA的肘形判据用于电力系统不良数据辨识[J].中国电机工程学报,2006,26(22):23-28. 被引量:26
  • 4陈伟,鲍慧.电力系统网络安全体系研究[J].电力系统通信,2008,29(1):31-34. 被引量:16
  • 5Schweppe F C,Wildes J,Rom D B.Power system static-state estimation:Part I,II&III[J].IEEE Transactions on Power Apparatus and Systems,1970,89(1):120-135. 被引量:1
  • 6Wu F F.Power system state estimation:a survey[J].International Journal of Electrical Power&Energy Systems,1990,12(2):80-87. 被引量:1
  • 7Monticelli A,Garcia A.Reliable bad data processing for real-time state estimation[J].IEEE Transactions on Power Apparatus and Systems,1983,102(5):1126-1139. 被引量:1
  • 8Cutsem T V,Pavella M R,Mili L.Hypothesis testing identification:a new method for bad data analysis in power system state estimation[J].IEEE Transactions on Power Apparatus and Systems,1984,103(11):3239-3252. 被引量:1
  • 9Monticelli A,Wu F F,Multiple M Y.Bad data identification for state estimation by combinatorial optimization[J].IEEE Transactions on Power Delivery,1986,1(3):361-369. 被引量:1
  • 10Cutsem T V,Pavella M R,Mili L.Bad data identification methods in power system state estimation:a comparative study[J].IEEE Transactions on Power Apparatus and Systems,1985,104(11):3037-3049. 被引量:1

共引文献314

同被引文献49

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部