期刊文献+

杭州湾北岸上海段潮滩时空演变分析与驱动力研究 被引量:1

Analysis of Temporal and Spatial Evolution and Driving Force of Tidal Flat in Shanghai Section of North Shore of Hangzhou Bay
下载PDF
导出
摘要 杭州湾北岸上海段潮滩的时空演变研究对上海市海岸带可持续管理具有重要意义。文章选取2007、2013、2019年的卫星遥感数据和驱动力数据,通过提取高、低潮图像水边线的方法得到潮滩,分析了潮滩时空变化,利用Logistic回归模型探讨了潮滩变化与各驱动因素之间的定量关系,然后以转移矩阵和Logistic回归模型模拟结果作为转换规则,通过CA模型对2025年潮滩的变化进行模拟分析。研究结果表明,2007、2013、2019年的潮滩总面积分别为10.6385 km^(2)、8.8938 km^(2)和9.2295 km^(2),潮滩先减少后略有增加,潮滩总体向西南255.3°迁移了2.9466 km。预测2025年的潮滩面积为9.8153 km^(2),从2019年起增长了0.5858 km^(2),潮滩总体向西南251.3°迁移了1.8525 km。从生态角度分析,影响潮滩演变的主要驱动力因素包括粘粒含量、粉砂粒含量、与水系距离、砂粒含量、人口密度变化、GDP变化等。 The research on the temporal and spatial evolution of the tidal flat in the Shanghai section of the north shore of Hangzhou Bay is of great significance to the sustainable management of the Shanghai coastal zone.This paper selects the satellite remote sensing data and driving force data in 2007,2013 and 2019,and obtains the tidal flats by extracting the water edge line of the high and low tide images,analyzes the temporal and spatial changes of tidal flats,and then uses Logistic regression model to explore the quantitative relationship between tidal flats changes and driving factors.Using the transition matrix and the simulation results of the Logistic regression model as the conversion rules,the CA model is used to simulate and analyze the changes of the tidal flats in 2025.The research results show that the tidal flats areas in 2007,2013 and 2019 were 10.6385 km^(2),8.8938 km^(2),and 9.2295 km^(2),respectively,which decreased first and then increased slightly,and the tidal flats have moved 2.9466 km to the southwest 255.3°.The predicted tidal flat area in 2025 is 9.8153 km^(2),an increase of 0.5858 km^(2) from 2019,and the tidal flats have moved 1.8525 km to the southwest 251.3°.From an ecological perspective,the main driving force factors affecting the evolution of tidal flats include clay content,silt content,distance from rivers,sand content,population density changes,GDP changes,etc.
作者 劳国栋 韩震 赖健 张斌 LAO Guodong;HAN Zhen;LAI Jian;ZHANG Bin(College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;Shanghai Engineering Research Center of Estuarine and Oceanographic Mapping,Shanghai 201306,China;High-resolution Remote Sensing Joint Laboratory of Marine Ecology,Shanghai Institute of Satellite Engineering,Shanghai 200240,China)
出处 《遥感信息》 CSCD 北大核心 2021年第6期103-112,共10页 Remote Sensing Information
基金 上海市海洋局科研专项(沪海科2019-03) 上海市科委科研计划项目(18DZ2253900)。
关键词 Logistic-CA-Markov模型 潮滩 演变 驱动力 预测 Logistic-CA-Markov model tidal flat evolution driving force prediction
  • 相关文献

参考文献24

二级参考文献167

共引文献288

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部