期刊文献+

基于LSTM循环神经网络算法的风电预测技术 被引量:4

Wind power forecasting technology based on LSTM recurrent neural network algorithm
下载PDF
导出
摘要 风力发电的随机性和不可控性,给发电控制环节造成控制负担,利用不同高度的风速、风向等气候因素对风力发电数据进行准确预测,有利于制定合理的调度计划。本文使用LSTM循环神经网络算法,实现了单变量预测未来一个时间点、多变量预测未来一个时间点的风电预测实例验证,实验结果发现算法在两种情况下均保持着高的预测精度。且由于单变量和多变量两种情况下预测误差相差不大,表明在实际风电预测中在多变量数据里风速本身仍起决定性作用。 The randomness and uncontrollability of wind power generation puts a control burden on the power generation control link.The use of wind speed and wind direction at different heights to accurately predict wind power data is conducive to formulating a reasonable dispatch plan.In this paper,the LSTM recurrent neural network algorithm is used to realize the verification of wind power forecasting examples in which univariate predicts a point in the future and multivariate predicts a point in the future.The experimental results show that the algorithm maintains high prediction accuracy in both cases.And because the prediction error is not much different between the univariate and the multivariate cases,it shows that the wind speed itself still plays a decisive role in the multivariate data in the actual wind power forecasting.
作者 金宇悦 康健 陈永杰 Jin Yuyue;Kang Jian;Chen Yongjie(Yisheng Innovation Education Base,North China University of Technology,Tangshan Hebei,063210;School of Electrical Engineering,North China University of Technology,Tangshan Hebei,063210)
出处 《电子测试》 2022年第2期49-51,共3页 Electronic Test
关键词 风力发电预测 风速 循环神经网络 长短期记忆神经网络 wind power forecasting wind speed cyclic neural network long and short-term memory neural network
  • 相关文献

参考文献3

二级参考文献40

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288. 被引量:1
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690. 被引量:1
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358. 被引量:1

共引文献676

同被引文献34

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部