期刊文献+

石墨烯水性分散工艺参数优化研究 被引量:1

Optimization of technological parameters for aqueous dispersion of graphene
下载PDF
导出
摘要 为提高石墨烯在水性溶液中的分散效果,充分发挥表面活性剂的作用,综合考虑表面活性剂掺量、超声功率和超声时间对石墨烯水性分散工艺参数进行优化。选取CO890、PVP、SL、P-123、Tween80等5种表面活性剂,采用吸光度表征石墨烯的分散效果,比较表面活性剂的分散效果,并确定最佳的分散工艺参数。研究表明:优化后的分散工艺参数可高效分散石墨烯。CO890、PVP、SL、P-123、Tween80质量配合比分别为5、1、1、5、9时分散效果最优;SL的最佳超声功率为300 W;超声时间控制在60、70 min为宜,时间过长会起反作用。分散效果最优的为P-123,最差的为PVP,但差距较小。 In order to study the dispersion effect of graphene in the aqueous solution,and fully exert the role of the surfactant.The graphene aqueous dispersion process was improved by considering surfactant dosage,ultrasonic power and ultrasonic time,and a method was given to quickly determine the dispersion process parameters.Five surfactants,including CO890,PVP,SL,P-123 and Tween80,were selected as the research objects.The dispersion effect of graphene was characterized by absorbance.The proposed method was used to quickly determine various dispersion process parameters,compare the dispersion effects of surfactants,and give guidelines for the use of each surfactant.The results showed that the improved dispersion process can efficiently disperse graphene and quickly obtain the process parameters of five surfactants.The optimal mass ratio of CO890,PVP,SL,P-123,Tween80 and graphene is 5,1,1,5,9.The optimal ultrasonic power of SL is 300 W.The ultrasonic time should be controlled at 60 min or 70 min,and excessive longer time will have adverse effects.The surfactant with the best dispersion effect is P-123,and the worst is PVP,but the gap is small.
作者 孙延法 高占远 阮冬 曾纪军 SUN Yanfa;GAO Zhanyuan;RUAN Dong;ZENG Jijun(Tianjin Key Laboratory of Civil Building Structure Protection and Reinforcement,Tianjin 300384,China;Faculty of Science,Engineering and Technology,Swinburne University of Technology,Melbourne 30001,Australia)
出处 《混凝土》 CAS 北大核心 2022年第1期127-130,134,共5页 Concrete
基金 国家自然科学基金(51708391) 天津市自然科学基金(18JCYBJC22700)。
关键词 石墨烯 表面活性剂 超声功率 超声时间 graphene surfactant ultrasonic power ultrasonic time
  • 相关文献

参考文献4

二级参考文献39

  • 1Geim A K.Graphene:status and prospects[J].Science,2009,324:1530-1534. 被引量:1
  • 2Lotya M,Hemandez Y,King P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water so-lutions[J].J Am Chem Soc,2009,131:3611-3620. 被引量:1
  • 3Lotya M,King P J,Khan U,et al.High-concentration,surfacrant-stabilized graphene dispersions[J].ACS Nano,2010,4:3155-3162. 被引量:1
  • 4Hernandez Y,Nicolosi V,Lotya M,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nat Nanotechnol,2008,3:563-568. 被引量:1
  • 5Hamilton C E,Lomeda J R,Sun Z Z,et al.High-yield organic dispersions of unfunctionalized graphene[J].Nano Leu,2009,9:3460-3462. 被引量:1
  • 6Khan U,O'Neill A,Lotya M,et al.High-concentration solvent exfoliation of graphene[J].Small,2010,6(7):864-871. 被引量:1
  • 7Behabm N,Lomeda J R,Green M J,et al.Spontaneous highconcentration dispersions and liquid crystals of graphene[J].Nat Nanotechnol,2010,5:406-411. 被引量:1
  • 8Li D,Muller M B,Gilje S,et al.Processable aqueous dispersions of graphene nanosheets[J].Nat Nanotechnol,2008,3:101-105. 被引量:1
  • 9Chen C M,Yang Q H,Yang Y G.,et al.Self-assembled freestanding graphite oxide membrane[J].Adv Mater,2009,21:3007-3011. 被引量:1
  • 10LU W,XIA Z,WU S,et al.Conductive graphene-based macroscopic membrane self-assembled at liquid-air interface[J].J Mater Chem,2010,DOI:10.1039/COJM02852E. 被引量:1

共引文献58

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部