期刊文献+

基于多片段语义时空图卷积网络的大学生校园日常行为预测 被引量:6

Daily behavior prediction of college students on campus based on multifragment semantic spatiotemporal graph convolutional network
原文传递
导出
摘要 当前大学生校园日常行为预测与挖掘研究中,一般采用统计、聚类、关联关系等浅层挖掘和学习算法,对学生校园行为的时序性、空间位置及其相关性缺乏深层与高阶应用分析。该文基于时空图网络结构,提出考虑校园活动时间序列与层次相关性和空间语义特征相关的多片段语义时空图卷积网络(MFSTGCN)模型。通过构建大学生校园行为数据集并进行实验,该模型达到了90.4%行为预测准确率,优于典型预测模型。最后,以学生个体成长监测为目标,预警日常行为异常的学生;挖掘学生行为习惯等高阶信息,为构建个性化培养提供有意义的参考。 Shallow algorithms of mining and learning such as statistics, clustering, and association relationships are generally used in current research on the prediction and mining of college students’ daily behaviors on campus, and there is a lack of in-depth and high-level analysis of the applications in time series, spatial location, and correlation of students’ behaviors on campus. Based on the network structure of spatio-temporal graphs, this paper proposes a multifragment semantic spatiotemporal graph convolutional network(MFSTGCN) model that considers the time series of campus activities and the correlation between hierarchy and spatial semantic features. By constructing a data set of college students’ campus behaviors and conducting experiments, the model in this paper achieves 90.4% behavior prediction accuracy, which is better than typical prediction models. Finally, we provide students with early warning of abnormal daily behaviors to monitor students’ individual growth and excavate high-level information such as student’s behaviors and habits to provide a meaningful reference for the construction of personalized education.
作者 喻宏伟 周东波 徐雯慧 余雅滢 王小梅 涂悦 YU Hongwei;ZHOU Dongbo;XU Wenhui;YU Yaying;WANG Xiaomei;TU Yue(Faculty of Artificial Intelligence in Education,Central China Normal University,Wuhan 430079,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第1期105-115,共11页 Journal of Tsinghua University(Science and Technology)
基金 科技创新2030新一代人工智能重大项目(2020AAA0108804) 国家自然科学基金资助项目(62177017)。
关键词 校园活动数据 图卷积网络 时空数据挖掘 行为预测 异常行为 行为习惯 campus activity data graph convolutional network spatiotemporal data mining behavior prediction abnormal behavior behavior habit
  • 相关文献

参考文献11

二级参考文献117

共引文献435

同被引文献68

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部