摘要
Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fuels and one of the most important commodity chemicals.Nevertheless,methanol is currently mainly produced from fossil-based syngas,the production of which yields tremendous carb on emission globally.Direct CO_(2)R towards metha nol poses great potential to shift the paradigm of methanol production.In this perspective,we focus our discussions on producing methanol from electrochemical CO_(2)R,using metallomacrocyclic molecules as the model catalysts.We discuss the motivation of having methanol as the sole CO_(2)R product,the documented application of metallomacrocyclic catalysts for CO_(2)R,and recent advance in catalyzing CO_(2) to methanol with cobalt phthalocyanine-based catalysts.We attempt to understand the key factors in determining the activity,selectivity,and stability of electrocatalytic CO_(2)-to-methanol conversion,and to draw mechanistic insights from existing observations.Finally,we identify the challenges hindering methanol electrosynthesis directly from CO_(2) and some intriguing directions worthy of further investigation and exploration.
基金
financial support through the StartUp Fund for Outstanding Talent with grant number A1098531023601307
the National University of Singapore and Ministry of Education in Singapore for its financial support through Tier-1 projects with grant numbers R-279000-622-133 and R-279-000-622-731.