摘要
Up to date,solid-state carbon dots(CDs)with bright red fluorescence have scarcely achieved due to aggregation-caused quenching(ACQ)effect and extremely low quantum yield in deep-red to near infrared region.Here,we report a novel fluorine-defects induced solid-state red fluorescence(λ_(em)=676 nm,the absolute fluorescence quantum yields is 4.17%)in fluorine,nitrogen and sulfur co-doped CDs(F,N,S-CDs),which is the first report of such a long wavelength emission of solid-state CDs.As a control,CDs without fluorine-doping(N,S-CDs)show no fluorescence in solid-state,and the fluorescence quantum yield/emission wavelength of N,S-CDs in solution-state are also lower/shorter than that of F,N,S-CDs,which is mainly due to the F-induced defect traps on the surface/edge of F,N,S-CDs.Moreover,the solid-state F,N,S-CDs exhibit an interesting temperature-sensitive behavior in the range of 80-420 K,with the maximum fluorescence intensity at 120 K,unveiling its potential as the temperature-dependent fluorescent sensor and the solid-state light-emitting device adapted to multiple temperatures.
基金
financially supported by the National Natural Science Foundation of China(No.51772001)
Anhui Province Key Research and Development Plan Project International Science and Technology Cooperation Special Project(No.202004bll020015)
support of the Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University),Ministry of Education.