期刊文献+

面向目标跟踪任务的蜂群无人机雷达协同航迹规划方法 被引量:3

Target Tracking Task-oriented Cooperative Path Planning Method for Swarm UAV Radar
原文传递
导出
摘要 针对面向目标跟踪的多无人机雷达协同航迹规划问题,给出了一种联合在线航迹优化和雷达功率分配方法。以最小化多目标跟踪总体估计误差的贝叶斯克拉美罗界为目标,推导出以雷达发射功率与无人机航向角为优化变量的决策函数,基于此建立面向多目标跟踪的多无人机雷达协同航迹规划模型。主要是通过在线优化调整控制参数,包括航向角和雷达功率资源的分配,以获得良好的跟踪性能结果。通过仿真算例分析性能,目标跟踪精度提升。 For the target tracking-oriented multi-UAV radar cooperative path planning problem,a joint online path optimization and radar power allocation(JOTPPA)method is presented.The Bayesian Cramér-Rao Lower Bound(BCRLB)that minimizes the overall estimation error of multi-target tracking is used as the optimization goal,and the decision function with the radar transmission power and the UAV’s heading angle as optimization variables is derived.On this basis,a multi-UAV radar cooperative path planning model for multitarget tracking is established.It is mainly through on-line optimization and adjustment of control parameters,including heading angle and radar power resource allocation,so as to obtain good tracking performance results.The performance is analyzed through simulation examples,and the target tracking accuracy is improved.
作者 李春霄 王冠绪 殷辉 戴金辉 严俊坤 Li Chunxiao;Wang Guanxu;Yin Hui;Dai JinHui;Yan Junkun(National Laboratory of Radar Signal Processing,Xidian University,Xi'an 710071,China;Science and Technology on Communication Information Security Control Laboratory,Jiaxing 314033,China)
出处 《战术导弹技术》 北大核心 2021年第6期30-37,共8页 Tactical Missile Technology
关键词 无人机 航迹规划 目标跟踪 雷达功率分配 贝叶斯克拉美罗界 unmanned aerial vehicle(UAV) path planning target tracking radar power alloca-tion Bayesian Cramér-Rao lower bound(BCRLB)
  • 相关文献

参考文献6

二级参考文献21

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 3纪震,廖惠连,昊青华.粒子群算法及应用[M].北京:科学出版社,2010. 被引量:8
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks,Perth,WA,1995.Piscataway,NJ:IEEE Service Center,1995:1942-1948. 被引量:1
  • 5Eberhart R C,Shi Y.Particle swarm optimization:Developments,applications and resources[C]//Proc of the 2001Congress on Evolutionary Computation,Seoul,2001.Piscataway,NJ:IEEE Press,2001:81-86. 被引量:1
  • 6Mohaghegi S,Del Valle Y,Venayagamoorthy G K,et al.A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with STATCOM[C]//Proc of IEEE Swarm Intelligence Symposium,2005.Piscataway,NJ:IEEE Press,2005:381-384. 被引量:1
  • 7Shi Y H,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]//Proc of the 2001 Congress on Evolutionary Computation,Seoul.Piscataway,NJ:IEEE Press,2001:101-106. 被引量:1
  • 8Doctor S,Venayagamoorthy G K,Gudise V G.Optimal PSO for collective robotic search applications[C]//Proc of the CEC 2004 Congress on Evolutionary Computation,2004.Piscataway,NJ:IEEE Press,2004:1390-1395. 被引量:1
  • 9Zhang Wen,Liu Yutian,Clerc M.An adaptive PSO algorithm for reactive power optimization[C]//Proc of the 6th International Conference on Advances in Power System Control,Operation and Management,2003.Piscataway,NJ:IEEE Press,2003:302-307. 被引量:1
  • 10Ratnaweera A,Halgamuge S K,Watson H C.Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[C]//Proc of the IEEE Transactions on Evolutionary Computation,2004.Piscataway,NJ:IEEE Press,2003:240-255. 被引量:1

共引文献44

同被引文献32

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部