期刊文献+

结合注意力卷积网络与分块特征的步态识别 被引量:5

Gait Recognition Combined with Convolutional Neural Network with Attention and Part-Level Features
下载PDF
导出
摘要 目前深度学习算法已经广泛应用于步态识别领域,但是大多数现有方法通过卷积神经网络提取步态全局特征时,忽略了许多包含关键步态信息的局部特征,在一定程度上削弱了步态识别的精度和提升潜力。针对上述问题,提出了一种结合注意力卷积神经网络与分块特征的跨视角步态识别方法,该方法以步态轮廓图序列为输入,每帧图片分别经过相同结构的注意力卷积神经网络融合成整体特征,在网络中加入有效的注意力机制CBAM能显式地建模各空间及通道的重要程度,增大显著区域特征的权重;整体特征被水平分成两块进行训练和步态识别,提取的步态局部特征更适合精细的步态分类。在步态数据集CASIA-B和OU-ISIR-MVLP上进行跨视角步态识别实验,结果证明在训练数据集充足与不足的条件下,该方法在识别精度上均优于现有方法。 Currently,though deep learning algorithms have been widely used in the field of gait recognition,most existing methods extract global gait feature by convolutional neural networks,which ignores many local features with key gait information and to a certain extent,weakens the accuracy and improvement potential of gait recognition.To solve the above problems,a cross-view gait recognition method combined with convolutional neural network with attention and part-level features is proposed.By using gait silouettes as input,each gait frame passes through the same convolutional neural network with attention and forms the overall information,adding an effective attention mechanism CBAM into the network can show the importance of modeling the spaces and channels and increase the weight of significant regional features.Then the whole information is horizontally divided into two parts for training and gait recognition,the extracted gait local features are more suitable for fine gait classification.Finally,cross-view gait recognition experiments on the gait datasets CASIA-B and OU-ISIR-MVLP are carried out.The results show that the proposed method has a significant improvement effect compared with the existing methods under the condition of reorganization and insufficiency of the training dataset.
作者 胡少晖 王修晖 HU Shaohui;WANG Xiuhui(Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第3期266-273,共8页 Computer Engineering and Applications
基金 国家自然科学基金(61602431) 浙江省自然科学基金(LY20F020018) 浙江省教育厅科研项目(Y201636772)。
关键词 步态识别 卷积神经网络 注意力机制 分块特征 gait recognition convolutional neural network attention mechanism part-level feature
  • 相关文献

参考文献5

二级参考文献28

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183
  • 2张天序,戴可荣,彭嘉雄.复杂图象序列的自适应目标提取和跟踪方法[J].电子学报,1994,22(10):46-53. 被引量:15
  • 3Dawson M R. Gait Recognition. Ph. D Dissertation. London, UK: Imperial College of Science, Technology and Medicine. Department of Computing, 2002 被引量:1
  • 4Tanawongsuwaia R, Bobick A. Gait Recognition from Time-Normalized Joint-Angle Trajectories in the Walking Plane // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2001 : 726-731 被引量:1
  • 5Wagg D K, Nixon M S. An Automated Model-Based Extraction and Analysis of Gait//Proc of the 6th International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004:11-16 被引量:1
  • 6Yam C Y, Nixon M S, Carter J N. Gait Recognition by Walking and Running : A Model-Based Approach//Proc of the Asian Conference on Computer Vision. Melbourne, Australian, 2002:1-6 被引量:1
  • 7Kale A A, Cuntoor N, Kruger V. Gait-Based Recognition of Human Using Continuous HMMs//Proc of the IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002:336-341 被引量:1
  • 8Huang P S, Harris C J, Nixon M S. Comparing Different Template Features for Recognizing People by Their Gait // Proc of the British Machine Vision Conference. Southampton, UK, 1998:639-643 被引量:1
  • 9Little J, Boyd J. Recognizing People by Their Gait: The Shape of Motion. IEEE Trans on Computer Vision Research, 1998, 2 (1): 2-32 被引量:1
  • 10Lee L. Gait Analysis for Classification. Technical Report, 2003-014, Massachusetts, USA: Massachusetts Institute of Technology. Artificial Intelligence Laboratory, 2003 被引量:1

共引文献32

同被引文献14

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部