摘要
为探究黏滞阻尼器非线性程度与阻尼大小对力修正迭代混合实验方法收敛性的影响,采用指数阻尼器模型模拟黏滞阻尼器,开展了具有不同速度指数与不同阻尼系数的黏滞阻尼器减振结构力修正迭代混合实验数值模拟。研究结果表明:当速度指数分别取0.4、0.5、0.6、0.7时,迭代完全收敛分别需要31轮、12轮、8轮、6轮,随着速度指数的增加,迭代收敛速度加快;当放大系数分别取0.6、0.8、1.0、1.2、1.4时,迭代完全收敛分别需要5轮、6轮、8轮、11轮、14轮,随着放大系数的变大,迭代收敛速度减慢。在模拟工况下,力修正迭代混合实验对速度指数取0.7、放大系数取0.6的情况收敛性较强。
This paper aims to explore the influence of the degree of nonlinearity and the size of damping of a viscous damper on the convergence of the force correction iterative hybrid test method.The study involves simulating the viscous damper using the exponential damper model and performing the numerical simulation of the force correction iterative hybrid test for the damping structures of viscous dampers with different rate indexes and different damping coefficients.The results show that at the rate indexes of 0.4,0.5,0.6,and 0.7,31,12,8,and 6 rounds are required respectively for iterative complete convergence,namely,an increase in the rate index means an increase in the rate of iterative convergence;and at the magnification coefficients of 0.6,0.8,1.0,1.2 and 1.4,5,6,8,11 and 14 rounds are necessary respectively for iterative complete convergence,namely,an increase in the magnification coefficient means a decrease in the rate of iterative convergence.At the rate index of 0.7 and the magnification coefficient of 0.6,the force correction iterative hybrid test has a strong convergence,as indicated by the simulated working conditions in the paper.
作者
王涛
浩杰敦
孟丽岩
郑欢
王贞
许国山
Wang Tao;Hao Jiedun;Meng Liyan;Zheng Huan;Wang Zhen;Xu Guoshan(School of Architecture & Civil Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China;School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China;School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)
出处
《黑龙江科技大学学报》
2022年第1期76-81,共6页
Journal of Heilongjiang University of Science And Technology
基金
国家自然科学基金项目(52078398,51978213)
教育部重点实验室开放基金项目(HITCE202008)。
关键词
黏滞阻尼器
力修正迭代混合实验
收敛性
非线性程度
viscous damper
force correction iterative hybrid test
convergence
degree of nonlinearity