期刊文献+

Assessing discharge periodicity in mountain catchments using classified environmental conditions(Tatra Mountains, Poland)

下载PDF
导出
摘要 The periodicity of a river expressed in cycles of various lengths(monthly, seasonal,multiannual) is a result of climatic factors and overlapping environmental conditions within its catchment. In uncontrolled or poorly surveyed catchments, it is very difficult to determine the duration of a stream’s hydrological activity. This is especially relevant for catchments with complicated water circulation in karstic rocks. The present study concerns the small catchment of the Str??yski Potok river located in the area of the Tatra National Park, in the Western Tatras. The observation period covered the 2015 hydrological year, which differed hydrologically from average conditions. This study aims to develop a simple method to explain the processes shaping the mountain stream discharge periodicity. The research employed periodic field observations linked with climatic and non-climatic factors. Environmental conditions were assessed as four classes reflecting their influence on appearance or disappearance of mountain stream water. Class boundaries were the values of quartiles. The degree of correspondence between environmental factors and stream field observations was described via the Index DC(Degree Correspondence Index) approach.Complete correspondence(Index DC =0) was found in 23% catchments, a weak relationship between conditions favouring discharge and actual condition(Index DC=-1, +1) was noted within 11 catchments,while in 9 catchments, no such relationship was found(Index DC =-2, +2). The obtained results indicate a correspondence or lack thereof between the environmental potential of the catchment and its discharge periodicity. The discrepancies between the assessment of the influence of climatic and nonclimatic factors and the data collected during field observations provide a basis for more detailed studies.Continuation of these studies based on the proposed classifications will allow for a more complete explanation of water disappearance in river channels and the determination of their short-and long-term disc
出处 《Journal of Mountain Science》 SCIE CSCD 2022年第1期16-32,共17页 山地科学学报(英文)
  • 相关文献

参考文献2

二级参考文献16

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部