摘要
为了明确玉米棒颗粒与四氢呋喃(THF)对整体煤气化联合循环(IGCC)合成气气体水合物生成的协同作用,在温度276.15K、初始压力为6.0MPa的静态反应条件下,通过实验研究了玉米棒颗粒+THF溶液体系中气体水合物的生成动力学过程,并确定了不同THF浓度溶液条件下水合物的生成诱导时间、气体消耗量、CO_(2)分离效率及水合物的晶体结构。实验结果表明:玉米棒的存在会延长实验的稳定时间,且其压降幅度相较于不含玉米棒颗粒的体系更高;无论是否含玉米棒颗粒,诱导时间均在180s以内,且随着THF浓度上升到摩尔分数4.0%和5.6%,二者的诱导时间变得非常接近;玉米棒颗粒存在时,THF溶液的浓度越大,气体消耗量达到最终气体消耗量90%的时间则越短,且在相同THF浓度下,其所获得的气体消耗量和CO_(2)分离效率普遍比纯THF溶液体系高,这意味着玉米棒颗粒的存在提高了THF溶液对CO_(2)的分离效果。同时,微观结构分析表明无论是否含有玉米棒颗粒,THF溶液体系中所生成的IGCC合成气气体水合物的结构均为sⅡ型,纯水体系中生成的IGCC合成气气体水合物结构均为sⅠ型和sⅡ型的混合结构。
A series of experiments was conducted at 276.15K and 6.0MPa to evaluate the kinetics of IGCC synthesis gas hydrate formation in the system containing corn cobs and tetrahydrofuran(THF)by measuring induction time,gas consumption,CO_(2) recovery and hydrate structure.The results showed that for all experiment cases with or without corn cobs,the induction time was within 180s.Besides,the induction time of the system containing corn cobs was slightly longer than that without corn cobs and this difference almost disappears as the THF concentration increases to mole fraction 4.0% and 5.6%.Further,relative to the system without corn cobs,the time required to complete hydrate formation was longer in the presence of corn cobs.As the THF concentration increases,less time was required for achieving 90% of final gas consumption in the presence of corn cobs.In addition,at a certain THF concentration,the gas consumptions in the presence of corn cobs were larger than that in the system without corn cobs.These indicate that the addition of corn cobs had a positive effect on the kinetics of IGCC syngas hydrates formation and the CO_(2) recovery.Interestingly,structure analysis proves that only sⅡ hydrates were observed in the presence of THF with or without corn cobs,while both sⅠand sⅡ hydrates were found in pure water.
作者
张青宗
吕秋楠
李小森
余益松
周诗岽
ZHANG Qingzong;LYU Qiunan;LI Xiaosen;YU Yisong;ZHOU Shidong(Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology,School of Petroleum Engineering,Changzhou University,Changzhou 213016,Jiangsu,China;Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,Guangdong,China;Key Laboratory of Gas Hydrate,Chinese Academy of Sciences,Guangzhou 510640,Guangdong,China;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,Guangzhou 510640,Guangdong,China;Guangzhou Center for Gas Hydrate Research,Chinese Academy of Sciences,Guangzhou 510640,Guangdong,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2022年第1期174-181,共8页
Chemical Industry and Engineering Progress
基金
国家自然科学基金(22008237,5197037)
中国科学院前沿科学“从0到1”原始创新项目(ZDBS-LY-SLH041)
广东省自然科学基金(2019A1515012086)
广州市基础与应用基础研究项目(202102020720)。