期刊文献+

基于多目标进化算法的自驾游用户导航规划 被引量:1

Self-driving navigation scheme based on multi-objective evolutionary algorithm
下载PDF
导出
摘要 传统的自驾导航只考虑路程的远近,难以满足用户的实际需求.在路线规划过程中,红绿灯、拥堵和限速等都将影响用户到达目标地点的时间.本文将用户的自驾路径规划抽象成多目标优化问题,首先通过对地图路线进行建模,然后采用NSGA-Ⅱ多目标进化算法对路线总路程和需要花费的总时间两个目标进行优化.实验证明,本文方法能够实现最短路径和最短时间方面的最优选择,为用户自驾导航提供最优的路线. The traditional self-driving navigation only considers the distance of the journey, which is difficult to meet the actual needs of users.In the process of route planning, traffic lights, congestion and speed limits all affect the time, which users take to reach their destination.In this paper, the user’s self-driving path planning is abstracted into a multi-objective optimization problem.Firstly, the map route is modeled, and then the NSGA-Ⅱ multi-objective evolutionary algorithm is used to optimize the two objectives, the total route distance and the total time needed.Experiments show that the method presented in this paper can achieve the optimal selection of the shortest path and the shortest time, and also provide the optimal route for users’ self-driving navigation.
作者 胡湘兰 徐运保 王求真 HU Xiang-lan;XU Yun-bao;WANG Qiu-zhen(School of Management,Hunan Institute of Engineering,Xiangtan 411005,China;School of Computer Science&School of Cyberspace Science,Xiangtan University 411105,China)
出处 《湘潭大学学报(自然科学版)》 CAS 2021年第6期13-23,64,共12页 Journal of Xiangtan University(Natural Science Edition)
基金 国家自然科学基金面上项目(61876164) 湘教通:(2021)94号。
关键词 多目标导航 NSGA-Ⅱ算法 最优路径 multi-objective navigation NSGA-II algorithm optimal path
  • 相关文献

参考文献8

二级参考文献22

  • 1刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:290
  • 2傅家良.运筹学方法与模型[M].上海:复旦大学出版社.2005. 被引量:7
  • 3Martins E Q V, Santos J L E. The Labeling Algorithm for the Multiobjective Shortest Path Problem[R]. CISUCTechnical Report TR99/005, Coimbra, Portugal: University of Coimbra, 1999. 被引量:1
  • 4Guerriero F, Musmanno R. Label Correcting Methods to Solve Multicriteria Shortest Path Problems [ J ]. Journal of Optimization Theory and Applications,2001 (3) : 589-613. 被引量:1
  • 5Kalyanmoy Deb.Multi-objective optimization using evolutionary algorithms[M].Chichester,UK:John Wiley & Sons,2001. 被引量:1
  • 6Schaffer J D.Multi objective optimization with vector evaluated genetic algorithms[C]//J Grefenstette.Proceedings of an International Conference on Genetic Algorithms and their Applications,1985:93-100. 被引量:1
  • 7Fonseca C M,Fleming P J.Genetic algorithm for multiobjective optimization:formulation,discussion and generalization[C]//Stephanie F.Proceedings of the Fifth International Conference on Genetic Algorithms,San Mateo,California.University of Illinois at UrbanaChampaign:Morgan Kauffman Publishers,1993:416-423. 被引量:1
  • 8Corne D W,Knowles J D,Oates M J.The pareto envelope-based selection algorithm for multiobjective optimization[C]//Marc Schoenauer,Kalyanmoy Deb,Günter Rudolph,et al.Proceedings of the Parallel Problem Solving from Nature VI Conference.[S.l.]:Springer,2000:839-848. 被引量:1
  • 9Corne D W,Jerram N R,Knowles J D,et al.PESA-Ⅱ:region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-2001).[S.l.]:Morgan Kaufmann Publishers,2001:283-290. 被引量:1
  • 10Zitzler E,Laumanns M,Thiele L.SPEA2:improving the strength pareto evolutionary algorithm for multiobjective optimization[C]//EUROGEN 2001:Evolutionary Methods for Design,Optimisation and Control with Applications to Industrial Problems,2001. 被引量:1

共引文献49

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部