期刊文献+

利用不等式约束求解病态问题的新算法 被引量:1

A New Algorithm for Ill-Posed Problems with Inequality Constraints
下载PDF
导出
摘要 病态问题是大地测量数据处理中常见的问题,充分利用平差过程所给的先验信息可以确保参数的可靠性和有效性。提出了一种利用不等式约束求解病态问题的新算法,该算法将先验信息表示为不等式形式,并与病态模型构成不等式约束平差模型。结合Karush-Kuhn-Tucker条件可将该模型转化为线性互补问题,然后利用Lemke算法求解。该法避免了对病态矩阵求逆,保证了参数解的唯一性和稳定性。最后,本文模拟了未知参数附先验信息的Hilbert矩阵及全球定位系统(Global Positioning System,GPS)快速定位实验,并结合多种经典的病态平差方法,验证了Lemke算法在处理病态问题上的有效性。 The ill-posed problem is a common problem in geodetic data processing.Making full use of the prior information given by the adjustment process could ensure the reliability and effectiveness of the parameters.In this paper,a new algorithm was proposed to solve ill-posed problems by using inequality constraints.The algorithm represents the prior information in the form of inequality and forms an inequality constrained adjustment model with ill-posed model.Combined with Karush-Kuhn-Tucker condition,the model could be transformed into a linear complementarity problem,and then solved by Lemke algorithm.The method avoids matrix inversion and ensures the uniqueness and stability of parameter solution.Finally,this paper simulated the Hilbert matrix with prior information of unknown parameters and GPS fast positioning experiment,and combined with a variety of classical ill-posed adjustment methods,verified the effectiveness of Lemke algorithm in dealing with the ill-posed problem.
作者 赵邵杰 宋迎春 李文娜 ZHAO Shaojie;SONG Yingchun;LI Wenna(School of Geoscience and Info-Physics, Central South University, Changsha Hunan 410083, China;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha Hunan 410083, China)
出处 《北京测绘》 2021年第11期1366-1373,共8页 Beijing Surveying and Mapping
基金 国家自然科学基金(41674009,41574006,41674012)。
关键词 病态问题 不等式约束 线性互补问题 Lemke算法 ill-posed problem inequality constraint linear complementarity problem lemke algorithm
  • 相关文献

参考文献12

二级参考文献45

共引文献156

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部