期刊文献+

基于仿射Bessel-Legendre不等式和不确定转移率的神经网络稳定性

Stability for neural networks based on affine Bessel-Legendre inequality and uncertain transition rates
下载PDF
导出
摘要 针对具有时变时滞和不确定转移率的马尔科夫神经网络系统,充分考虑马尔科夫转移率的不确定特性,利用基于松弛变量的有效技术代替传统不等式来约束转移速率中的不确定项,从而减少了决策变量的个数并降低了计算复杂度.通过建立时滞依赖的增广Lyapunov-Krasovskii泛函,并基于仿射Bessel-Legendre(B-L)不等式,给出依赖于时滞和时滞导数上下界的具有较小保守性的神经网络系统稳定条件.最后,通过两个数值例子说明了理论结果的有效性. For Markovian neural network with time-varying delays and uncertain transition rates,the effective relaxation variable technique instead of the traditional inequality is adopted to restrain the uncertain terms of the transition rates by fully considering the uncertain characteristic of Markovian transition rates,which reduces the number of decision variables and the computational complexity.By applying the delayed-dependent augmented Lyapunov-Krasovskii functional,and affine Bessel-Legendre(B-L)inequality,the less conservative stability conditions that are dependent on upper and lower bounds of delay and delay derivative are proposed.Finally,two numerical examples are presented to illustrate the effectiveness of the theoretical results.
作者 王军义 张文涛 刘振伟 姜杨 WANG Jun-yi;ZHANG Wen-tao;LIU Zhen-wei;JIANG Yang(Faculty of Robot Science and Engineering,Northeastern University,Shenyang Liaoning 110819,China;School of Information Science and Engineering,Northeastern University,Shenyang Liaoning 110819,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第1期41-47,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61903075,U20A20197) 辽宁省自然科学基金项目(2019–KF–03–02,2019–MS–116) 中央高校基本科研业务费项目(N2026003,N2004014,N2126006) 教育部春晖计划合作科研项目(LN2019006) 辽宁省科技重大专项计划项目(2019JH1/10100005) 辽宁省重点研发计划项目(2020JH2/10100040)资助.
关键词 马尔科夫神经网络系统 不确定转移率 仿射Bessel-Legendre(B-L)不等式 增广Lyapunov-Krasovskii泛函 Markovian neural networks system uncertain transition rates affine Bessel-Legendre(B-L)inequality augmented Lyapunov-Krasovskii functional
  • 相关文献

参考文献5

二级参考文献27

  • 1梁学斌,吴立德.Hopfield型神经网络的全局指数稳定性及其应用[J].中国科学(A辑),1995,25(5):523-532. 被引量:49
  • 2季策,张化光.多时滞Hopfield神经网络的鲁棒稳定性及吸引域的估计[J].控制理论与应用,2005,22(4):538-542. 被引量:2
  • 3KAO Y G, WANG C, ZHANG L. Delay-dependent exponential sta- bility of impulsive markovian jumping eohen-grossberg neural net- works with reaction-diffusion and mixed delays [J]. Neural Process- ing Letters, 2013, 38(3): 321 - 346. 被引量:1
  • 4WU Z, PARK J H, SU H Y, et al. Stochastic stability analysis for discrete-time singular Markov jump systems with time-varying de- lay and piecewise-constant transition probabilities [J]. Journal of the Franklin Institute, 2012, 349(9): 2889 - 2902. 被引量:1
  • 5LIU Y R, WANG Z D, LIU X H. Exponential synchronization of complex networks with Markovian jump and mixed delays [J]. Physics Letters A, 2008, 372(22): 3986 - 3998. 被引量:1
  • 6KAO Y G, GUO J F, WANG C H, et al. Delay-dependent robust ex- ponential stability of Markovian jumping reaction-diffusion Cohen- Grossberg neural networks with mixed delays [J]. Journal of the Franklin Institute, 2012, 349 (6): 1972 - 1988. 被引量:1
  • 7YANG X S, CAO J D, LU J Q. Synchronization of randomly coupled neural networks with Markovian jumping and time-delay [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60 (2): 363 - 376. 被引量:1
  • 8ZHANG H G, WANG Y C. Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays [J]. IEEE Transactions on Neural Network, 2008, 19(2): 366 - 370. 被引量:1
  • 9BOUKAS E K. Stochastic Switching Systems: Analysis and Design [M]. Berlin: Birkhauser Boston Inc, 2005. 被引量:1
  • 10WU Z G, SHI P, SU H, et al. Passivity analysis for discrete-time s- tochastic Markovian jump neural networks with mixed time delays [J]. IEEE Transactions on Neural Networks, 2011, 22 (10): 1566 - 1575. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部