期刊文献+

主结构提取和多尺度线性滤波的织物疵点检测方法 被引量:3

Fabric defect detection method with main structure extraction and multi-scale linear filtering
下载PDF
导出
摘要 为提高复杂背景下织物疵点检测的准确率,提出了一种融合主结构提取和多尺度线性滤波的疵点检测方法。该方法对输入图像进行中值滤波和对数增强预处理以增加疵点和背景的对比度,并利用相对总变差模型提取织物图像的主结构信息——疵点,达到抑制背景纹理的效果;然后利用多尺度线性滤波器实现精确定位达到增强疵点区域的目的;最后利用预处理与疵点增强结果进行点乘的形态学处理得到完整疵点区域。实验结果表明:此方法可以检测污渍、破洞、带纱、霉斑、结团等多种疵点类型,与RPCA等3种检测方法相比,检测准确率提高了9%以上。 In order to improve the accuracy of fabric defect detection in complex background,a defect detection method based on main structure extraction and multi-scale linear filtering was proposed.The input image was preprocessed by median filtering and logarithmic enhancement to increase the contrast of the fault and the background,and the main structure information defect of fabric image was extracted by relative total variation model to suppress the background texture;Then the multi-scale linear filter was used to accurately locate and enhance the fault region;Finally a complete defect region was obtained by morphological processing of point multiplication based on preprocessing and defect enhancement results.The experimental results show that the method can detect stains,holes,mildew,knots,compared with RPCA and other three detection methods,the detection accuracy of the method is improved by more than 9%.
作者 陈雪阳 潘杨 朱磊 翟子豪 CHEN Xueyang;PAN Yang;ZHU Lei;ZHAI Zihao(School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《纺织高校基础科学学报》 CAS 2021年第4期53-61,共9页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(61971339) 陕西省重点研发计划项目(2019GY-113)。
关键词 织物疵点 主结构提取 多尺度线性滤波 相对总变差模型 fabric defect main structure extraction multi-scale linear filtering relative variation model
  • 相关文献

参考文献8

二级参考文献72

  • 1陈俊杰,谢春萍.自动验布系统[J].纺织科技进展,2004(5):56-57. 被引量:10
  • 2邹超,朱德森,肖力.基于模糊类别共生矩阵的纹理疵点检测方法[J].中国图象图形学报,2007,12(1):92-97. 被引量:21
  • 3MAK K L, PENG P. Detecting defects in textile fabrics with optimal Gabor filters [ J ]. International Journal of Computer Science, 2006,1 (4) : 274 - 282. 被引量:1
  • 4JING J F, ZHANG H H, LIP F, et al. Fabric defect detection using Gabor filters and defect classification based on LBP and Tamura method [ J]. Journal of The Textile Institute, 2013,104 ( 1 ) : 18 - 27. 被引量:1
  • 5BU H G, WANG J, HUANG X B. Fabric defect detection based on multiple fractal features and support vector data description [ J]. Engineering Applications of Artificial Intelligence, 2009,22 (2) : 224 - 235. 被引量:1
  • 6NGAN H Y T, PANG G K H. Regularity analysis for patterned texture inspection [ J ]. Automation Science and Engineering, 2009, 6( 1 ) : 131 - 144. 被引量:1
  • 7MUELLER S, NICKOLAY B. Morphological image processing for the recognition of surface defects [ J . SPIE, 1994, 2249 : 298 - 307. 被引量:1
  • 8MAK K L, PENG P, YIU K F C. Fabric defect detection using morphological filters [ J 1. Image and Vision Computing, 2009, 27:1585- 1592. 被引量:1
  • 9TSAI I S, HUM C. Automatic inspection of fabric defects using an artificial neural network technique [ J ]. Textile Research Journal, 1996, 66 (7) : 474 - 482. 被引量:1
  • 10KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[C]//IEEE Trans. 35th IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy. Rome: Piscataway, IEEE ,2000 : 1041 - 1047. 被引量:1

共引文献92

同被引文献22

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部