期刊文献+

基于聚类分析方法的皮肤病学研究热点分析 被引量:1

Cluster analysis for research hotspots in dermatology
下载PDF
导出
摘要 目的调查皮肤病学领域的相关文献,得出近期该领域的研究热点,了解其发展现状,为未来的研究提供方向。方法利用JCR数据库查阅皮肤病学领域的相关期刊,应用PubMed数据库获取皮肤病学领域影响因子最高的4个杂志中近2年的所有文献。用书目共现分析系统(BICOMB2.0软件)统计文献中的主要主题词/副主题词的出现频次,并截取出现频次>15次者为高频词,获得词篇矩阵。利用gCLUTO软件对其进行聚类分析,通过分析不同类别主要主题词/副主题词,获得目前皮肤病学领域的研究热点。结果共检索出5136篇文献,选择出现频次>15次的主要主题词/副主题词共38对,聚为4类。结论现阶段皮肤病学的研究热点主要有3个大方向,即皮肤病的药物治疗、疗效评价及安全情况,黑色素瘤的遗传学、危险因素、流行病学、生存预后、发病率与死亡率等,应用皮肤镜等影像技术诊断皮肤肿瘤,评估恶性皮肤肿瘤的风险。 Objective To investigate the research hotspots in the field of dermatology to understand its development status and to provide directions for future research.Methods The JCR database was used to search for relevant journals in the field of dermatology.Similarly,the PubMed database was used to obtain all the literature across the four journals with the highest impact factors in the field of dermatology over the last two years.Both were recorded.The bibliographic co-occurrence analysis system(BICOMB2.0 software)was used to count the occurrence frequency of the major subject/subtopic words in the literature,and intercept the high-frequency words that appeared more than 15 times to obtain the lexicon matrix.gCLUTO software was used for cluster analysis,and obtain the current research hotspots in the field of dermatology by analyzing the major subject/subtopic words of different categories.Results A total of 5136 references were retrieved,and 38 pairs of the major subject/subtopic words with a frequency of>15 times were selected,which were grouped into four categories.Conclusion The current research hotspots of dermatology stem into three major directions:drug treatment,efficacy evaluation and safety of skin diseases;research on the genetics,risk factors,epidemiology,survival prognosis,morbidity and mortality of melanoma;and using dermoscopy and other imaging techniques to diagnose skin tumors and assess the risk of malignant skin tumors.
作者 祝琳琳 崔雷 ZHU Linlin;CUI Lei(Department of Dermatology,Shenyang 7th People’s Hospital,Shenyang 110003,China;Department of Information Science,School of Health Man­agement,China Medical University,Shenyang 110122,China)
出处 《中国医科大学学报》 CAS CSCD 北大核心 2022年第1期48-53,共6页 Journal of China Medical University
关键词 皮肤病学 聚类分析 研究热点 文献计量分析 dermatology cluster analysis research hotspots bibliometric analysis
  • 相关文献

参考文献3

二级参考文献60

  • 1Hearst M. Untangling Text Data Mining [ J ]. Proc Assoc Comput Linguist, 1999,37:3-10. 被引量:1
  • 2Schijvenaars B J, Mons B, Weeber M, et al. Thesaurus-based Dis- ambiguation of Gene Symbols [ J ]. BMC Bioinformatics, 2005,6 : 149. 被引量:1
  • 3Tsai RT, Wu SH, Chou WC, et al. Various Criteria in the Evalua- tion of Biomedical Named Entity Recognition[ J ]. BMC Bioinforma- tics, 2006,7:92. 被引量:1
  • 4Tsoi LC, Patel R, Zhao W, et al. Text-mining Approach to Evalu- ate Terms for Ontology Development[ J]. J Biomed Inform,2009,42 (5) :824-830. organ AA. Evaluation of Text Data Min- ing for Database Curation : Lessons Learned from the KDD Chal-. 被引量:1
  • 5Hu Y, Li Y, Lin H, et al. Integrating Various Resources for Gene Name Normalization I J 1. PLoS One,2012,7 (9) : e43558. 被引量:1
  • 6Torvik VI, Smalheiser NR. A Quantitative Model for Linking Two Disparate Sets of Articles in MEDLINE [ J ]. Bioinformaties, 2007, 23(13) :1658-1665. 被引量:1
  • 7Oda K, Kim JD, Ohta T, et al. New Challenges for Text Mining : Mapping between Text and Manually curated Pathways [ J ]. BMC Bioinformatics ,2008,9 Suppl 3 : $5. 被引量:1
  • 8Xia J, Fang AC, Zhang X. A Novel Feature Selection Strategy for Enhanced Biomedical Event Extraction Using the Turku System [ J ]. Biomed Res Int,2014,2014 : 1 -12. 被引量:1
  • 9Kim JD, Ohta T, Tateisi Y, et al. GENIA Corpus-semantically Annotated Corpus for Bio Text Mining [ J ]. Bioinformatics, 2003, 19( S1 ) :i180-182. 被引量:1
  • 10Yeh AS, Hirschman L, Mlenge Cup [ J ]. Bioinformatics ,2003 , 19 ( S1 ) : i331-339. 被引量:1

共引文献13

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部