摘要
以高羊茅Festuca elata 4个品种‘Bonsai’、‘Aries’、‘Millennium’和‘Hundog-5’作为材料,系统研究了不同时间的干旱胁迫对叶片光合性能及超微结构的影响。结果表明:当PAR为1400μmol·(m^(2)·s)^(-1)时,4个品种的P_(n)均达到最高值;同一光照强度下,4个品种P_(n)随着处理时间的延长而下降,下降幅度表现为‘Aries’>‘Bonsai’>‘Hundog-5’>‘Millennium’。从C_(i)与G_(s)、T_(r)表现来看,‘Bonsai’和‘Aries’在干旱处理28 d后有小幅增加的现象,表明‘Bonsai’和‘Aries’P_(n)的下降原因为非气孔因素。叶片超微结构显示,干旱胁迫28 d时,‘Millennium’和‘Hundog-5’叶片的叶绿体仍然具有较完整的形态,‘Bonsai’和‘Aries’则表现出明显的质壁分离现象,叶绿体、线粒体结构受损严重,推测‘Millennium’和‘Hundog-5’具有较强的干旱胁迫缓冲能力,可以作为耐旱草种进行应用。研究结果为草坪砖基质栽培环境下的草种选择和水分管理提供了参考。
Four Festuca elata cultivars,’Bonsai’,’Aries’,’Millennium’and’Hundog-5’,were used to investigate the effects of drought stress on photosynthetic performance and ultrastructure of leaves.The results indicated that when PAR was 1400μmol·(m^(2)·s)^(-1),the P_(n)of four cultivars reached the highest level.Under the same light intensity,the P_(n)decreased with the extension of drought treatment time,and the decreasing range was’Aries’>’Bonsai’>’Hundog-5’>’Millennium’.According to the performance ofC_(i),G_(s)and T_(r),’Bonsai’and’Aries’increased slightly after28 d of drought treatment,indicating that the decrease of P_(n)was caused by non stomatal factors.The ultrastructure of leaves showed that the chloroplasts of’Millenium’and’Hundog-5’still had relatively complete morphology after28 d of drought stress,while’Bonsai’and’Aries’showed obvious plasmalemma separation,and the chloroplast and mitochondrial structure were seriously damaged.It was speculated that’Millenium’and’Hundog-5’had stronger drought stress buffering capacity,and could be used as drought tolerant grass cultivars.The results provide a reference for grass selection and water management in the lawn brick substrates environment.
作者
赵延春
金耀华
Zhao Yanchun;Jin Yaohua(College of Civil Engineering,Yangzhou Polytechnic College,Yangzhou,225009)
出处
《分子植物育种》
CAS
北大核心
2021年第24期8315-8322,共8页
Molecular Plant Breeding
基金
扬州市职业大学优秀青年骨干教师项目和扬州市职业大学校级科研项目(2018ZR22)共同资助。
关键词
草坪砖基质
干旱胁迫
高羊茅
光合性能
叶片超微结构
Lawn brick substrates
Drought stress
Festuca elata
Photosynthetic performance
Leaf ultrastructure