期刊文献+

乳腺癌的多模态影像学特征与分子分型相关性的研究进展

Research progress on the correlation between multimodal imaging features and molecular classification of breast cancer
下载PDF
导出
摘要 乳腺癌已成为当下一个重大的公共卫生威胁,其发病情况日加严峻,且有年轻化趋势,及早的发现并进行治疗对于患者的预后有重要意义。随着当下精准医学的发展,联合乳腺外科、放射科、超声医学科及病理科等多学科协作模式的建立,乳腺X线摄影、超声、磁共振(magnetic resonance imaging,MRI)等结合多项先进现代医学影像技术的多模态影像学诊断也应运而生,利用多模态影像学技术及早准确的对乳腺癌进行诊断,以及在术前根据其特征性表现间接估测乳腺癌的基因表达能力和水平,为乳腺癌术前选择合理有效的术式及术后个体化靶向治疗提供有价值的影像学资料,已经成为了当前研究的热点。 Objective:Breast cancer has become a major public health threat.Its incidence is increasing year by year,and there is a trend of younger generation.Early detection and treatment are of great significance to the prognosis of patients.With the current development of precision medicine,a multidisciplinary collaboration model has been established in conjunction with breast surgery,radiology,ultrasound medicine and pathology,and many advanced modern technologies such as mammography,ultrasound,and magnetic resonance imaging(MRI).Multi-modal imaging diagnosis such as medical imaging technology has also emerged at the historic moment.How to use multi-modal imaging technology to diagnose breast cancer early and accurately and indirectly estimate the gene expression ability and gene expression ability of breast cancer based on its characteristic performance before surgery level,providing valuable imaging data for the selection of reasonable and effective surgical procedures before breast cancer surgery and individualized targeted therapy after surgery has become a hot spot of current research.
作者 安蕾 孙芳 刘灿 An Lei;Sun Fang;Liu Can(Binzhou Medical University,Binzhou Shandong,256600,China;The Affiliated Hospital of Binzhou Medical University,Binzhou Shandong,256600,China;Yantai Affiliated Hospital of Binzhou Medical University,Yantai Shandong,256600,China)
出处 《中外女性健康研究》 2021年第23期8-11,166,共5页 Women's Health Research
基金 山东省医药卫生科技发展计划项目(202009020663) 滨州医学院科研计划与科研启动基金项目(编号:BY2019KYQD43)。
关键词 乳腺癌 多模态影像学诊断 X线摄影 超声 MRI 分子分型 Breast cancer Multimodal imaging diagnosis X-ray photography Ultrasound MRI Molecular classification
  • 相关文献

参考文献8

二级参考文献41

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部