期刊文献+

Highway Lane Change Decision-Making via Attention-Based Deep Reinforcement Learning 被引量:2

下载PDF
导出
摘要 Dear editor,Deep reinforcement learning(DRL),combining the perception capability of deep learning(DL)and the decision-making capability of reinforcement learning(RL)[1],has been widely investigated for autonomous driving decision-making tasks.In this letter,Fund:supported in part by the National Natural Science Foundation of China(NSFC)(62173325);the Beijing Municipal Natural Science Foundation(L191002).
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第3期567-569,共3页 自动化学报(英文版)
基金 supported in part by the National Natural Science Foundation of China(NSFC)(62173325) the Beijing Municipal Natural Science Foundation(L191002).
关键词 driving DEEP HAS
  • 相关文献

参考文献3

二级参考文献126

  • 1MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-levelcontrol through deep reinforcement learning [J]. Nature, 2015,518(7540): 529 – 533. 被引量:1
  • 2SILVER D, HUANG A, MADDISON C, et al. Mastering the gameof Go with deep neural networks and tree search [J]. Nature, 2016,529(7587): 484 – 489. 被引量:1
  • 3AREL I. Deep reinforcement learning as foundation for artificialgeneral intelligence [M] //Theoretical Foundations of Artificial GeneralIntelligence. Amsterdam: Atlantis Press, 2012: 89 – 102. 被引量:1
  • 4TEAAURO G. TD-Gammon, a self-teaching backgammon program,achieves master-level play [J]. Neural Computation, 1994,6(2): 215 – 219. 被引量:1
  • 5SUTTON R S, BARTO A G. Reinforcement Learning: An Introduction[M]. Cambridge MA: MIT Press, 1998. 被引量:1
  • 6KEARNS M, SINGH S. Near-optimal reinforcement learning inpolynomial time [J]. Machine Learning, 2002, 49(2/3): 209 – 232. 被引量:1
  • 7KOCSIS L, SZEPESVARI C. Bandit based Monte-Carlo planning[C] //Proceedings of the European Conference on MachineLearning. Berlin: Springer, 2006: 282 – 293. 被引量:1
  • 8LITTMAN M L. Reinforcement learning improves behaviour fromevaluative feedback [J]. Nature, 2015, 521(7553): 445 – 451. 被引量:1
  • 9BELLMAN R. Dynamic programming and Lagrange multipliers[J]. Proceedings of the National Academy of Sciences, 1956,42(10): 767 – 769. 被引量:1
  • 10WERBOS P J. Advanced forecasting methods for global crisis warningand models of intelligence [J]. General Systems Yearbook, 1977,22(12): 25 – 38. 被引量:1

共引文献137

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部