摘要
磁致伸缩材料在传感、控制及能量与信息转换等领域应用前景广阔,此类材料的性能提升及工程应用已成为研究热点,但材料在制备与使用中不可避免会出现缺陷.本文以常用的铁磁性材料铁单质为研究对象,采用分子动力学方法分别建立无缺陷、孔洞缺陷与裂纹缺陷的铁单质磁致伸缩结构模型,分析了缺陷形式对铁单质薄膜磁致伸缩行为的影响,并从微观原子磁矩角度解释缺陷对磁致伸缩行为的影响机理.结果表明:缺陷会对其周围的原子磁矩产生影响,从而影响铁单质薄膜磁致伸缩,其中孔洞形缺陷对磁致伸缩的影响较小,裂纹形缺陷对磁致伸缩的影响较大.裂纹的方向会影响铁单质薄膜的磁致伸缩,与磁化方向平行的裂纹会降低材料在磁化方向上由初始状态至磁化达到饱和的最大磁致伸缩量;与磁化方向垂直的裂纹会提高材料在磁化方向上由初始状态至磁化达到饱和的最大磁致伸缩量.
Magnetostrictive materials have broad application prospects in sensing, control, energy conversion, and information conversion. The improving of the performances and applications of such materials has become a research hotspot, but defects will inevitably appear in the preparation and use of materials. In this study, the magnetostrictive structure model of iron elemental material with no defect or hole defect or crack defect is established by the molecular dynamics method. The influences of different defects on the magnetostrictive behavior of iron thin films are analyzed, and the mechanism of the influence of defects on the magnetostrictive behavior is depicted from the perspective of atomic magnetic moment. The results show that the films with 60 × 2 × 1 defects in the center are the easiest to reach saturation magnetostriction, and the magnetostriction is the least after reaching saturation, with respect to the films without defects. The films with 10 × 10 × 1 and 2 × 60 × 1 defects in the center require a larger magnetic field to approach to saturation, and the magnetostriction of the film with 2 × 60 × 1 defects in the center reaches a maximum value after saturation.This is because the defects will affect the magnetic moment of the surrounding atoms and make them deflect to the direction parallel to the defects, thus affecting the magnetostriction of the iron thin film. Among them, the hole defects have less influence on the magnetostriction, while the crack defects have stronger influence on the magnetostriction. The direction of the crack also has an effect on the magnetostriction of Fe thin film. When the crack is parallel to the direction of magnetization, the maximum magnetostriction of the film in the direction of magnetization from the initial state to the saturation of magnetization will decrease. When the crack is perpendicular to the direction of magnetization, the maximum magnetostriction of the film in the direction of magnetization from the initial state to the saturation of magnetizatio
作者
张硕
龙连春
刘静毅
杨洋
Zhang Shuo;Long Lian-Chun;Liu Jing-Yi;Yang Yang(Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China;Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China)
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2022年第1期278-283,共6页
Acta Physica Sinica
基金
国家重点研发计划(批准号:2018YFB0703500)资助的课题。
关键词
铁单质
磁致伸缩
缺陷
分子动力学
薄膜
elemental iron
magnetostriction
defects
molecular dynamics
thin film