摘要
InGaAs/InP雪崩光电二极管(avalanche photodiode APD)可实现近红外波段的单光子检测,具有集成度高功耗低等优势,被广泛应用于量子信息科学、激光测绘、深空通信等领域。通常,为了减小误计数,InGaAs/InP APD工作在门控盖革模式,其门控信号的重复频率直接决定了探测器的工作速率。基于此,采用低通滤波方案,结合集成了GHz正弦门控信号产生、雪崩信号采集、温度控制、偏置电压调节等功能的处理电路,搭建了GHz重复频率可调的高性能InGaAs/InP单光子探测器。GHz门控信号重复频率升高到2 GHz,其相位噪声仍优于-70 dBc/Hz@10 kHz,且尖峰噪声被抑制到热噪声水平,当探测效率为10%时,暗计数仅为2.4×10^(-6)/门。此外,还验证了该方案下探测器的长时间稳定性,测试了工作速率、偏置电压等对APD关键性能参数的影响,为GHz InGaAs/InP APD的进一步集成及推广奠定基础。
InGaAs/InP avalanche photodiodes(InGaAs/InP APDs)are capable of detecting single photons in the near infrared.With advantages of high integration and low-power consumption,they are widely used in quantum information science,laser mapping,deep space communication and other fields.In order to reduce error counts,InGaAs/InP APDs are generally operated in the gated Geiger mode,where the repetition frequency of the gating signal directly determines the detector’s working rate.Thus,we adopt a low-pass filtering scheme to build a high-performance InGaAs/InP singlephoton detector with adjustable GHz repeating frequency by integrating the processing circuit with GHz sine gating signal generation,avalanche signal acquisition,temperature control,bias voltage regulation and other functions.When the frequency of GHz gating signal increases to 2 GHz,its phase noise is still better than the-70 dBc/Hz@10 kHz,and the spike noise is suppressed to the level of thermal noise.When the detection efficiency is 10%,the dark count is only 2.4×10^(-6)/gate.In addition,we also verify the long-term stability of the detector under this scheme,and test the influence of working rate,bias voltage and other factors on the key performance parameters of APD,which lays a foundation for the further integration and promotion of GHz InGaAs/InP APDs.
作者
王天烨
费起来
徐博
梁焰
曾和平
WANG Tian-Ye;FEI Qi-Lai;XU Bo;LIANG Yan;ZENG He-Ping(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Chongqing Institute of East China Normal University,Chongqing 401147,China;State Key Laboratory of Precision Spectroscopy,East China Normal University,Shanghai 200062,China)
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2021年第6期840-846,共7页
Journal of Infrared and Millimeter Waves
基金
国家自然科学基金(11604209)
上海市市级科技重大专项(2019SHZDZX01)。