摘要
Tungsten disulfide(WS_(2))has been considered as a promising hydrogen evolution reaction(HER)candidate due to its high activity,robust chemical stability,and earth-abundant resources.However,the inert basal planes and low electrical conduc-tivity greatly hinder its development in HER.Increasingly,the density of active sites through the structural designing is one of the most effective strategies to enhance the HER performance.Herein,we report a facile one-step hydrothermal method for synthesizing flower-like WS_(2)nanosheets for highly efficient HER.Besides,the effect of preparation temperature is also been discussed.The optimized WS_(2)nanosheets exhibit the enhanced HER activity in strong acidic solutions with a low Tafel slope and a good stability.The improvement of the HER performance can be attributed to sheet-like nanostructures,which greatly increase the edge sites and defects,resulting in a high density of exposed active sites.Besides,these sheet-like nano-structures also can make the acidic electrolyte easily accessible to the surface of WS_(2)and accelerate the electron transfer rate.
基金
the National Natural Science Foundation of China(Grant 51572301)
National Key R&D Program of China(2017YFB0306001 and 2018YFC1901702)
Hunan Provincial Natural Science Foundation(Grant 2016JJ3153)
the Innovation-Driven Project of Central South University(Grant 502221802)are gratefully acknowledged.