期刊文献+

深度学习方法在兴趣点推荐中的应用研究综述 被引量:13

A Survey of Studies on Deep Learning Applications in POI Recommendation
下载PDF
导出
摘要 在基于位置的社交网络(LBSN)中,用户可以在兴趣点(POI)进行签到以记录行程,也可以与其他用户分享自身的感受并形成社交好友关系。POI推荐是LBSN提供的一项重要服务,其可以帮助用户快速发现感兴趣的POI,也有利于POI提供商更全面地了解用户偏好,并有针对性地提高服务质量。POI推荐主要基于对用户历史签到数据以及用户生成内容、社交关系等信息的分析来实现。系统归纳POI推荐中所面临的时空序列特征提取、内容社交特征提取、多特征整合、数据稀疏性问题处理这4个方面的挑战,分析在POI推荐中使用深度学习方法解决上述问题时存在的优势以及不足。在此基础上,展望未来通过深度学习提高POI推荐效果的研究方向,即通过增量学习加速推荐模型更新、使用迁移学习缓解冷启动问题以及利用强化学习建模用户动态偏好,从而为实现效率更高、用户体验质量更好的推荐系统提供新的思路。 In Location-Based Social Network(LBSN),users conduct check-ins at selected Point of Interest(POI)to record their trajectories,share feelings with their friends and form social friends.POI recommendation is an important service of LBSN to help users find POIs that meet their interests.The service can also help service providers understand user interests and improve user experience accordingly.POI is implemented mainly by analyzing the historical check-in data,social relationships,reviews and other user information that can be explored to speculate user preference.In this paper,we summarizes challenges faced by POI recommendation,i.e.,spatial-temporal sequential feature extraction,social feature extraction from user content,multi-feature incorporation,and solutions to data sparsity.Then we give a brief introduction to deep learning-based methods for POI recommendation,and review their advantages as well as disadvantages displayed when dealing with the above challenges.On this basis,we point out future directions of studies on deep learning applications in POI recommendation,i.e.,incremental learning to accelerate the recommendation model update process,transfer learning to solve the cold start problem,and reinforcement learning to model dynamic user preference.The discussion attempts to provide reference to studies on improving the efficiency and user experience of recommendation systems.
作者 汤佳欣 陈阳 周孟莹 王新 TANG Jiaxin;CHEN Yang;ZHOU Mengying;WANG Xin(School of Computer Science,Fudan University,Shanghai 201203,China;Shanghai Key Laboratory of Intelligent Information Processing,Fudan University,Shanghai 201203,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第1期12-23,42,共13页 Computer Engineering
基金 上海市自然科学基金(16ZR1402200)。
关键词 兴趣点推荐 深度学习 特征提取 特征整合 数据稀疏性 Point of Interest(POI)recommendation deep learning feature extraction feature incorporation data sparsity
  • 相关文献

参考文献3

二级参考文献84

  • 1Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks// Proceedings of the 12th ACM International Conference on Ubiquitous Computing ( UbiComp 2010 ). Copenhagen, Denmark, 2010:119-128. 被引量:1
  • 2Yadav M S, Valck K D, Hennig-Thurau T, Hoffman D L. Social commerce: A contingency frameworks for assessing marketing potential. Journal of Interactive Marketing, 2013, 27(4) : 311-323. 被引量:1
  • 3Sarwat M, Eldawy A, Mokbel M F, Riedl J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues//Proceedings of the 14th International Conference on Mobile Data Managemant (MDM 2013). Milan, Italy, 2013:26-35. 被引量:1
  • 4Qu Y, Zhang J. Trade area analysis using user generated mobile location data//Proceedings of the 22nd International Conference on World Wide Web (WWW 2013). Rio de Janeiro, Brazil, 2013:1053-1064. 被引量:1
  • 5Stewart K, Glanville J L, Bennett D A. Exploring spatiotem- poral and social network factors in community response to major flood disaster. The Professinonal Geographer, 2014, 66(3) : 421-435. 被引量:1
  • 6Gao H, Barbier G, Goolsby R. Harnessing the crowd sourcing power of social media for disaster relief. IEEE Intelligent Systems, 2011, 26(3): 10-14. 被引量:1
  • 7Bahir E, Peled A. Identifying and tracking major events using geo-social networks. Social Science Computer Review, 2013, 31(4): 458-470. 被引量:1
  • 8McArdle G, Lawlor A, Furey E, Pozdnoukhov A. City-scale traffic simulation from digital footprints//Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp 2012). Beijing, China, 2012:47-54. 被引量:1
  • 9Liang Y, CaverIee J, Cheng Z, Kameth K Y. How big is the crowd ? Event and location based population modeling in social media//Proceedings of the 24th ACM Conference on Hypertext and Social Media (HT2013). Paris, France, 2013:99-108. 被引量:1
  • 10Caverlee J, Cheng Z, Sui D Z, Kamath K Y. Towards geo-social intelligence: Mining, analyzing, and leveraging geospatial footprints in social media. IEEE Data Engineering Bulletin, 2013, 36(3): 33-41. 被引量:1

共引文献100

同被引文献77

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部