期刊文献+

LSTM神经网络在地震资料初至拾取中的应用 被引量:3

A First Break Picking Method in Seismic Prospecting Using LSTM Recurrent Networks
下载PDF
导出
摘要 本文引入RNN的升级算法LSTM神经网络技术,建立了一套海量数据、高精度的自动拾取地震资料初至流程。相比于其他神经网络方法,LSTM神经网络能够提取数据的时序特征,加强学习初至前噪音时序特征,从而提高初至拾取的精度,为地震资料的初至拾取提供一套新的思路。首先设计样本制作过程并建立、训练模型,通过模拟资料验证方法的有效性,应用于胜利油田浅海与西部山地地震勘探资料的初至拾取,取得理想效果,证明LSTM神经网络初至拾取具有较高的精度与适用性。 High precision,high efficiency and high automation are very important in first break picking of massive seismic data.In this paper,LSTM recurrent networks are introduced to establish a set of automatic first break picking process of massive seismic data with high precision.Compared with other neural networks methods,LSTM recurrent networks can extract the time series characteristics of data and enhance the learning and memory of noise characteristics before the first arrival,to improve the accuracy of first break picking.This provides a new idea for first break picking of seismic data.Firstly,the making process of samples is designed and the training models are established.The implementation process of the method is discussed through the simulation data.Then,it is applied to first break picking of seismic data from Shengli Oilfield in both the ocean and western mountainous areas.The results show that the method using LSTM recurrent networks has high accuracy and applicability.
作者 李林伟 彭崯 童思友 王忠成 尚新民 赵胜天 Li Linwei;Peng Yin;Tong Siyou;Wang Zhongcheng;Shang Xinmin;Zhao Shengtian(The Key Laboratory of Submarine Geosciences and Prospecting Techniques, Qingdao 266100, China;Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;Geophysical Research Institute of SINOPEC Shengli Oilfield, Dongying 257022, China)
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期87-93,共7页 Periodical of Ocean University of China
基金 国家自然科学基金项目(42074140) 国家科技重大专项课题项目(2016ZX05006-002)资助。
关键词 地震资料处理 初至拾取 长短时记忆神经网络 机器学习 自动化 seismic data processing first break picking long short time memory neural network machine learning automation
  • 相关文献

参考文献10

二级参考文献80

共引文献146

同被引文献40

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部