期刊文献+

Fast synthesis and improved electrical stability in n-type Ag_(2)Te thermoelectric materials 被引量:1

原文传递
导出
摘要 Cu-and Ag-based superionic conductors are promising thermoelectric materials due to their good electrical properties and intrinsically low thermal conductivity. However, the poor electrical and thermal stability restrict their application. In this work, n-type pure phase Ag_(2) Te compound is synthesized by simply grinding elemental powders at room temperature and compacted by spark plasma sintering. It is found that, because of the migration of Ag+after the phase transition around 425 K, submicron pores are formed inside the samples during the electrical performance measurement, resulting in poor electrical stability and repeatability of Ag_(2) Te samples. However, Pb-doped Ag_(2-x)Pb_(x)Te(x = 0–0.05) specimens exhibit improved electrical stability by the precipitation of the secondary phase Pb Te in the Ag_(2) Te matrix, which is confirmed via cyclic electrical property measurement and microstructure characterization.A maximum z T = 0.72 is obtained at 570 K for x = 0.03 mainly due to the increased power factor.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第32期241-250,共10页 材料科学技术(英文版)
基金 financially supported by the National Science Fund for Distinguished Young Scholars (No. 51725102) the Natural Science Foundation of China (Nos. 51871199, 51861145305)。
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部