期刊文献+

大数据平台下LDA-ALS智能推荐算法研究 被引量:4

Research on LDA-ALS Intelligent Recommendation Algorithm Based on Big Data Platform
下载PDF
导出
摘要 传统的推荐算法随着用户和项目的数量增多,新用户在单一项目上的行为减少,导致推荐质量较低,鉴于此,提出一种融合文档主题算法(LDA)和交替最小二乘算法(ALS)的混合协同过滤推荐算法。LDA-ALS算法结合了文档主题算法和交替最小二乘算法的优势,缓解因用户信息缺失造成的冷启动问题,并将高维的用户-项目评分矩阵映射到低维的近似矩阵中,有效缓解了数据稀疏性问题。实验结果表明:在Spark平台下,该算法在旅游数据集上比传统推荐算法降低了2.4%的误差,而且更能适应目前网络环境下的大数据处理。 With the increase in the number of users and items,the traditional recommendation algorithm reduces user behavior on a single item,and the data of new users and items added is insufficient,resulting in lower recommendation quality.In view of this,a hybrid collaborative filtering recommendation algorithm composed of document topic algorithm(LDA)and Alternating Least Squares(ALS)was proposed.The LDA-ALS algorithm combined with the advantages of the document topic algorithm and the alternating least squares algorithm to alleviate the cold start problem caused by the lack of user information,and the high-dimensional user-item rating matrix was mapped to the low-dimensional approximate matrix,the problem of data sparsity was effectively alleviated.Experimental results show that under the Spark platform,the algorithm reduces the error of 2.4%compared with the traditional recommendation algorithm on the tourism data set,and it is more adaptable to big data processing in the current network environment.
作者 陈丽芳 陈宏松 孙海民 CHEN Li-fang;CHEN Hong-song;SUN Hai-min(College of Science,North China University of Science and Technology,Tangshan Hebei 063210,China;The Technology Innovation Center of Cultural Tourism Big Data of Hebei Province,ChengdeHebei 067000,China;Hebei Normal University for Nationalities,Chengde Hebei 067000,China)
出处 《华北理工大学学报(自然科学版)》 CAS 2022年第1期89-97,共9页 Journal of North China University of Science and Technology:Natural Science Edition
基金 河北省文化旅游大数据技术创新中心开放课题(SG2019036-yb2005)。
关键词 SPARK LDA ALS Spark LDA ALS
  • 相关文献

参考文献8

二级参考文献80

  • 1魏衍君,楚志凯.电子商务智能推荐技术研究[J].商丘职业技术学院学报,2011,10(2):41-44. 被引量:2
  • 2张晗,潘正运,张燕玲.旅游服务智能推荐系统的研究与设计[J].微计算机信息,2006,22(05X):170-171. 被引量:10
  • 3滕薇,王光明.基于Web的网络课程智能推荐机制[J].鞍山科技大学学报,2006,29(3):274-277. 被引量:2
  • 4M. Vrable, et al., "Cumulus: File system back up to the cloud," ACM Transactions on Storage (TOS), vol. 5, December 2009. 被引量:1
  • 5"HDFS Fdratin'http://hadp.apach.rg/dcs/stab2/hadp-prjtdist/hadphdfs/Federatin.htm. 被引量:1
  • 6"An Introduction to HDFS Federation," http://hortonworks.com/blog/an-introduction-to-hdfsfederation/. 被引量:1
  • 7J. Liu, et al., "THE optimization of HDFS based on small files," in Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Conference on, 2010, pp. 912-915. 被引量:1
  • 8L. Xuhui, et al., "Implementing WebGIS on Hadoop: A case study of improving small file I/O performance on HDFS," in Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, 2009, pp. 1-8. 被引量:1
  • 9"Apache Hadoop for Arehiving Email," http://blog.cloudera.com/blog/2011/09/hadoop-forarchiving-email/. 被引量:1
  • 10"Hadoop Archive," http://hadoop.apache.org/docs/rl.2.1/hadoop_archives.html, 2011. 被引量:1

共引文献26

同被引文献22

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部