摘要
以植物型润滑油为切削液的微量润滑(Minimum quantity lubrication,MQL)技术因表现出优良的加工性和环境友好性而备受关注。然而,由于油基切削液的冷却能力低,传统油基MQL往往会产生高的切削温度。水基切削液的冷却性能好,但润滑能力不如油基切削液。为了提高水基切削液应用于MQL时的润滑性能,提出了一种以氧化石墨烯/氧化铝(GO/Al_(2)O_(3))混合水基纳米流体为切削液的MQL技术,并对其摩擦磨损和加工特性进行了对比研究。为了获得较佳的减摩抗磨性能,优选了G0/Al_(2)O_(3)的质量比。结果表明,水基C0/Al_(2)O_(3)混合纳米流体MQL与单一C0或Al_(2)O_(3),纳米流体MQL相比,摩擦系数和磨斑直径显著降低,加工特性提升明显,且表现出与传统植物油MQL相当的加工特性。水基混合纳米流体MQL的优异性能归因于C0/Al_(2)O_(3)混合纳米颗粒渗透进入摩擦界面,形成由G0自润滑层和Al_(2)O_(3)润滑薄膜组成的复合保护膜,阻止了摩擦界面的直接接触,从而提高了润滑能力。
Minimum quanity lbrieation(MQL)technologies using vegetable oil lbricants as cutig fuids have atracted much atention as they have exellent machining performance and are ninomentally fiendly.Nevetheless,oil-based MQL tends to produce high cuting temperature due to the low coling capability of oil lubricants.In this work,a MQL technology that uilies graphene oxide/aluminum oxide(C0/Al_(2)O_(3))hybrid nanoparicle water-based lubricants as the cuting fluid is developed,and its tibological and machining characterstics are comparatively inesigated.The mass ratio of co to Al203 is also varied to achieve opimnal performance.The results show that G0/Al_(2)O_(3) wate-based MQL reduces the cofficient of friction and the worm scar diameter significanly,and improves machining performance compared wih individual GO and Al_(2)O_(3) warebased MQLs.It also shows a comprative performance wih taditional vegrtable oilbased MQL.The superior performance of G0/Al_(2)O_(3)water-based MQL is atributed to the fact that G0/Al_(2)O_(3)hybrid nanoparice aditves enter the rubbing interface and form a composite proteting film consisting of a sle-lubrcation layer of GO and a tibo-hin layer of Al_(2)O_(3),which prevents the inerface from direet contact and smoothens the asperities.
作者
吕涛
许雪峰
于爱兵
阎成杰
LÜTao;XU Xuefeng;YU Aibing;YAN Chengjie(Preision Mold Proessing and Ielligent Manufacturing Research Center,Ningbo Plyechnie,Ningbo Zhejiang 315800,China;Department of Mechanieal Engineeing and Mechanics,Ningbo Uniesity,Ningbo Zhejiang 315211 China;Department of Mechanical Engineering,Zhejang University of technology,Hangzhou 315800,China)
出处
《机械设计与研究》
CSCD
北大核心
2021年第6期133-140,共8页
Machine Design And Research
基金
宁波自然科学基金资助项目(202003N4190)。