期刊文献+

基于IK-MD-SA聚类算法的电力数据审计疑点研究

Research on Power Data Audit Doubts Based on IK-MD-SA Clustering Algorithm
下载PDF
导出
摘要 为解决电力行业海量非结构化数据导致审计疑点数据效率、准确性低的难题,本文提出了一种基于迭代IK-MD-SA聚类电力大数据审计疑点算法。首先运用相异性度量算法通过构造相异性矩阵和计算均值相异性改进K-means聚类算法选择初始聚类中心,并将簇均值替换为簇中位数完成后续聚类中心迭代,以消离群点影响聚类结果的准确性。然后利用改进的蜂群算法对聚类结果进行优化,使其保证高运行效率的前提下聚类结果仍具有较高准确性。最后,通过离散性电力数据进行识别潜在疑点试验,验证了所提算法的可行性和有效性。 In order to solve the problem of low efficiency and accuracy of audit doubt data caused by massive unstructured data in the power industry,this paper proposes an audit doubt algorithm based on iterative IK-MD-SA clustering.Firstly,the k-means clustering algorithm is improved by constructing the dissimilarity matrix and calculating the mean dissimilarity to select the initial cluster center,and the cluster mean is replaced by the cluster median to complete the subsequent cluster center iteration,so as to eliminate the outliers affecting the accuracy of the clustering results.Then,the improved bee colony algorithm is used to optimize the clustering results,so that the clustering results still have high accuracy under the premise of high running efficiency.Finally,the feasibility and effectiveness of the proposed algorithm are verified by discrete power data identification experiments.
作者 陈蓉 CHEN Rong(Chengdu Xingdianyan Electric Power Technology Co.,Ltd.,Chengdu 610041,China)
出处 《价值工程》 2022年第1期174-176,共3页 Value Engineering
关键词 相异性度量算法 改进蜂群算法 迭代K-means算法 审计疑点 dissimilarity measurement algorithm improved bee colony algorithm iterative K-means algorithm audit the suspects
  • 相关文献

参考文献14

二级参考文献151

共引文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部