期刊文献+

基于一致图学习的鲁棒多视图子空间聚类 被引量:1

Robust multi-view subspace clustering based on consistency graph learning
下载PDF
导出
摘要 针对多视图数据分析易受原始数据集噪声干扰,以及需要额外的步骤计算聚类结果的问题,提出一种基于一致图学习的鲁棒多视图子空间聚类(RMCGL)算法。首先,在各个视图下学习数据在子空间中的潜在鲁棒表示,并基于该表示得到各视图的相似度矩阵。随后,基于得到的多个相似度矩阵学习一个统一的相似度图。最后,通过对相似度图对应的拉普拉斯矩阵添加秩约束,确保得到的相似度图具有最优的聚类结构,并可直接得到最终的聚类结果。该过程在一个统一的优化框架中完成,能同时学习潜在鲁棒表示、相似度矩阵和一致图。RMCGL算法的聚类精度(ACC)在BBC、100leaves和MSRC数据集上比基于图的多视图聚类(GMC)算法分别提升了3.36个百分点、5.82个百分点和5.71个百分点。实验结果表明,该算法具有良好的聚类效果。 Concerning that the multi-view data analysis is susceptible to the noise of the original dataset and requires additional steps to calculate the clustering results,a Robust Multi-view subspace clustering based on Consistency Graph Learning(RMCGL)algorithm was proposed.Firstly,the potential robust representation of data in the subspace was learned in each view,and the similarity matrix of each view was obtained based on these representations.Then,a unified similarity graph was learned based on the obtained multiple similarity matrices.Finally,by adding rank constraints to the Laplacian matrix corresponding to the similarity graph,the obtained similarity graph had the optimal clustering structure,and the final clustering results were able to be obtained directly by using this similarity graph.The process was completed in a unified optimization framework,in which potential robust representations,similarity matrices and consistency graphs could be learned simultaneously.The clustering Accuracy(ACC)of RMCGL algorithm is 3.36 percentage points,5.82 percentage points and 5.71 percentage points higher than that of Graph-based Multi-view Clustering(GMC)algorithm on BBC,100leaves and MSRC datasets,respectively.Experimental results show that the proposed algorithm has a good clustering effect.
作者 潘振君 梁成 张化祥 PAN Zhenjun;LIANG Cheng;ZHANG Huaxiang(School of Information Science and Engineering,Shandong Normal University,Jinan Shandong 250358,China)
出处 《计算机应用》 CSCD 北大核心 2021年第12期3438-3446,共9页 journal of Computer Applications
基金 国家自然科学基金联合基金资助项目(U1836216) 国家自然科学基金面上项目(61873089) 山东省重大基础研究项目(ZR2019ZD03)。
关键词 多视图 一致图 子空间 聚类 自加权 图学习 multi-view consistency graph subspace clustering self-weighting graph learning
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部