期刊文献+

基于DCGAN的路面裂缝图像生成方法 被引量:12

Generation method of pavement crack images based on deep convolutional generative adversarial networks
下载PDF
导出
摘要 为提升特定道路图像数据集的质量,提出一种基于深度卷积生成式对抗网络(deep convolutional generative adversarial networks,DCGAN)的沥青路面裂缝图像生成方法。首先,通过车载运动相机拍摄和人工手机拍摄相结合的方式自主采集裂缝图像,得到较均衡且样本特征丰富的小型图像集;其次,对原始图像进行滤波去噪以及伽马变换操作,增强图中裂缝特征的辨识度,建立沥青路面裂缝数据训练集;第三,构建深度卷积生成式对抗神经网络模型,调整沥青路面裂缝图像生成网络的参数,并优化其网络超参数,更真实地生成路面裂缝图像数据集;最后,利用Faster R-CNN(regional convolutional neural network)检测网络对生成裂缝图像进行检测,验证生成图像在检测网络中的有效性。研究结果表明:基于深度卷积生成式对抗网络的方法能够生成较逼真裂缝图像;与常规增广方式相比,本文提出的方法能够更加有效地解决特定条件下数据集数量不足和质量不高的问题;将生成的虚拟图像与真实路面图像共同输入检测模型可以提高路面裂缝检测精度。 An asphalt pavement crack image generation method was proposed based on deep convolutional generative adversarial network(DCGAN) to improve the quality of a specific pavement image dataset. Firstly, the crack images were captured by a combination of in-vehicle motion camera photography and manual cell phone photography to obtain a more balanced and feature-rich sample small image set. Secondly, original images were denoised by filtering and gamma transformed to enhance the recognition of crack features in the plots, so that a training set of asphalt pavement crack data was created. Thirdly, a deep convolutional generative adversarial neural network model was constructed. The parameters of asphalt pavement crack image generation network were adjusted and its network hyperparameters was optimized to achieve a more realistic generation of pavement crack image dataset. Finally, faster regional convolutional neural network(R-CNN) detection network was used to detect the generated crack images, which can verify the effectiveness of the generated images in the detection network. The results show that the method based on deep convolutional generative adversarial network can generate more realistic crack images. The proposed method can address the problem of insufficient quantity and low quality of datasets under specific conditions more effectively than conventional augmentation methods.Inputting generated virtual images and real pavement images into the detection model can improve the pavement crack detection accuracy.
作者 裴莉莉 孙朝云 孙静 李伟 张赫 PEI Lili;SUN Zhaoyun;SUN Jing;LI Wei;ZHANG He(School of Information Engineering,Chang'an University,Xi'an 710064,China;Computer Network Center,Shihezi University,Shihezi 832003,China;Xi'an Xiangteng Micro-Electronics Technology Co.Ltd.,Xi'an 710068,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第11期3899-3906,共8页 Journal of Central South University:Science and Technology
基金 国家重点研发计划项目(2018YFB1600202) 长安大学博士研究生创新能力培养项目(300203211241)。
关键词 道路检测 图像生成 深度卷积生成式对抗网络 深度学习 pavement detection image generation deep convolutional generation adversarial network(DCGAN) deep learning
  • 相关文献

参考文献16

二级参考文献62

  • 1王晓嘉,高隽,王磊.激光三角法综述[J].仪器仪表学报,2004,25(z3):601-604. 被引量:167
  • 2苗启广,王宝树.基于改进的拉普拉斯金字塔变换的图像融合方法[J].光学学报,2007,27(9):1605-1610. 被引量:50
  • 3马常霞.基于图像分析的路面裂缝检测的关键技术研究[D].南京:南京理工大学,2011. 被引量:2
  • 4HUANG Y C,TSAI Y C.Crack Fundamental Elements(CFE) for Multi-scale Crack Classification[C]//SCARPAS A,KRINGOS N,AL-QADI I.Proceedings of the 7th RILEM International Conference on Cracking in Pavement.Berlin:Springer,2012:419-428. 被引量:1
  • 5TSAI Y C,LI F.Critical Assessment of Detecting Asphalt Pavement Cracks Under Different Lighting and Low Intensity Contrast Conditions Using Emerging 3D Laser Technology[J].Journal of Transportation Engineering,2012,138(5):649-656. 被引量:1
  • 6PENG B,WANG K C P,CHEN C.Automatic Crack Detection by Multi-seeding Fusion on 1 mm Resolution 3D Pavement Images[C]//VARMA A, GOSLING G D.Proceedings of the Second Transportation and Development Congress.Reston:ASCE,2014:543-552. 被引量:1
  • 7TSAI Y C, KAUL V, MERSEREAU R M. Critical Assessment of Pavement Distress Segmentation Methods[J]. Journal of Transportation Engineering 2010,136(1) :11-19. 被引量:1
  • 8WANG K C P. Designs and Implementations of Auto- mated Systems for Pavement Surface Distress Survey[J]. Journal of Infrastructure System, 2000,6 (1): 24-32. 被引量:1
  • 9PAL N R, PAL S K. Object-background Segmentation Using New Definitions of Entropy [J]. Computers and Digital Techniques, 1989,136 (4) : 284-295. 被引量:1
  • 10HARIS N K,SANHOURI I,DOWNE Y A B. Analy- sis of Segmentation Algorithms for Pavement DistressImages[J]. Journal of Transportation Engineering, 1993,119(6) :868-888. 被引量:1

共引文献197

同被引文献101

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部