期刊文献+

基于SIFT的特征均匀提取改进研究 被引量:8

Improved Research on Uniform Feature Extraction Based on SIFT Algorithm
下载PDF
导出
摘要 针对现在基于图像的三维重建面临的图像数据尺度不一和影像分辨率增高特征点增加两个问题,本文提出了基于SIFT的尺度均衡和均匀限制特征点数量的改进策略,通过采用给定特征点数量的方法来控制影像提取特征点的数量。同时根据高斯尺度增大与提取特征点数量成反比的特性,通过构建尺度与特征点数量的比例系数和给定特征点数量就可以获得影像的不同高斯尺度上提取的特征点数量。通过对影像进行格网划分,将提取特征点数量分配到每个格网。通过控制格网提取特征点数量的控制,可以在控制特征点提取数量的同时,获得更为均匀的特征点分布。实验证明,本文改进算法与SIFT算法相比,尺度分布更加均匀,空间分布的比例系数有30%左右的提升,提取特征点匹配的正确率有5%的提升,因此,本文改进算法在基于图像的三维重建中有一定程度的应用价值。 Aiming at the two problems of different image data scales and the increase of feature points with higher image resolution faced by image-based 3D reconstruction,an improved strategy based on SIFT-based scale equalization and uniformly limiting the number of feature points is proposed.In this paper,the number of feature points extracted from the image is controlled by using the method of given number of feature points.At the same time,according to the characteristic that the increase of Gaussian scale is inversely proportional to the number of extracted feature points,the number of feature points extracted on different Gaussian scales of the image can be obtained by constructing the scale factor and the number of feature points and the given number of feature points.By dividing the image into grids,the number of extracted feature points is allocated to each grid.By controlling the number of feature points extracted by the grid,a more uniform feature point distribution can be obtained while controlling the number of feature points extracted.Experiments have shown that compared with the SIFT algorithm,the improved algorithm in this paper has a more uniform scale distribution,a 30%improvement in the proportional coefficient of the spatial distribution,and a 5%improvement in the matching accuracy of the extracted feature points.Therefore,the improved algorithm in this paper is based on.There is a certain degree of application value in the three-dimensional reconstruction of the image.
作者 彭得阳 邓安健 PENG Deyang;DENG Anjian(School of Surveying and Land Information Engineering,He′nan Polytechnic University,Jiaozuo 454000,China)
出处 《测绘与空间地理信息》 2021年第12期46-50,56,共6页 Geomatics & Spatial Information Technology
基金 河南省自然科学基金面上项目(182300410113) 河南理工大学博士基金项目(B2017-08)资助。
关键词 SIFT 尺度分布 空间分布 信息熵 三维重建 SIFT scale distribution spatial distribution information entropy three-dimensional reconstruction
  • 相关文献

参考文献5

二级参考文献20

  • 1王敬东,徐亦斌,沈春林.一种新的任意角度旋转的景象匹配方法[J].南京航空航天大学学报,2005,37(1):6-10. 被引量:14
  • 2孙坚伟,王汝笠.改进的MOPs图像匹配算法[J].科学技术与工程,2006,6(21):3439-3441. 被引量:4
  • 3王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 4[1]LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal on Computer Vision,2004,60(2):91-110. 被引量:1
  • 5[2]MIKOLAJCZY K,SCHMID C.A Performance Evaluation of Local Descriptors[R].CVPR,2003:257-264. 被引量:1
  • 6[3]LINDEBERG T.Automatic Scale Selection as a Pre-Processing Stage for Interpreting the Visual World[C]∥Proc Fundamental Structural Properties in Image and Pattern Analysis,1999:9-23. 被引量:1
  • 7MORAVEC H.Rover visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence,1981:785-790. 被引量:1
  • 8HARRIS C,STEPHENS M.Acombined corner and edge detector[C]//Fourth Alvey Vision Conference,1988:147-151. 被引量:1
  • 9SCHMID C,MOHR R.Local grayvalue invariants for image retrieval[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(5):530-534. 被引量:1
  • 10LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110 被引量:1

共引文献100

同被引文献70

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部