期刊文献+

Revisiting the pinning sites in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets

原文传递
导出
摘要 It is still an open debate whether the 1:5 H cell boundaries(CBs)or the intersections of 1:3 R platelets and1:5 H CBs are the strong pining sites for the cellular nanostructured 2:17-type Sm-Co-Fe-Cu-Zr high temperature permanent magnets despite that they have been widely applied in advanced industries since 1970 s.Herein,through tuning the volume fraction of Zr-enriched 1:3 R platelets by varying the second-step aging time,the pinning behavior in a model magnet Sm_(2.5)Co_(44.9)Fe_(21.5)Cu_(5.6)Zr_(3.0)(wt%)was investigated.The results show that the volume fraction of 1:3 R platelets can be effectively enlarged without changing the cell size(i.e.the volume fraction of CBs)by extending the aging time at 400℃.Micro scopic TEM characterizations co mbined with macro scopic magnetic measurements reveals that the locally thickened 1:3 R platelets after long-term second-step aging reduce the effective pinning area by interrupting the magnetic domain walls at CBs,weakening the average pinning strength and the coercivity of the magnet.Consequently,our work supports that the 1:5 H CBs act as the dominating pinning sites instead of the intersections of 1:3 R platelets and 1:5 H CBs,which may provide an important insight towards understanding the hard magnetism of pinning-controlled permanent magnets.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第12期1560-1566,I0004,共8页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(52071256,51901170) the Opening Project of Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education,China(MMMM-202003)。
  • 相关文献

参考文献7

二级参考文献15

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部