期刊文献+

结合多注意力机制的自监督目标跟踪 被引量:3

Self-supervised object tracking based on multi-attention mechanism
下载PDF
导出
摘要 为解决现有目标跟踪数据集不足及手工标注数据成本过大的问题,提出结合判别式相关滤波及多注意力机制的自监督目标跟踪方法。训练集选用原始未标记的视频图像,使用子空间注意力机制及通道注意力机制针对不同的输入目标对特征进行自适应调整,构建相关滤波输出响应图进行跟踪定位;通过前向跟踪和后向跟踪两个跟踪过程,以自监督的训练方式用最终响应结果与初始标签构建循环一致性损失。在OTB50和OTB100两个公开数据集的实验结果表明了所提方法的实时性和有效性。 To solve the problem of insufficient target tracking data set and excessive manual labeling data cost,a self-supervised target tracking method combining discriminant correlation filter and multi-attention mechanism was proposed.The original unlabeled video image was used as the training set,subspace attention mechanism and channel attention mechanism were used to adaptively adjust features for different tracking targets,and correlation filters were constructed at the end to output the response map for tracking and positioning.Through two tracking processes,forward tracking and backward tracking,the self-supervised training method used the final response result and the initial label to construct the cycle consistency loss.Experimental results on two public data sets OTB50 and OTB100 show the real-time and effectiveness of the proposed method.
作者 张志远 杨帆 ZHANG Zhi-yuan;YANG Fan(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机工程与设计》 北大核心 2021年第12期3502-3509,共8页 Computer Engineering and Design
基金 空中交通管理系统与技术国家重点实验室开放基金项目(SKLATM201902)。
关键词 目标跟踪 相关滤波 自监督学习 注意力机制 循环一致性损失 target tracking correlation filter self-supervised learning attention mechanism cycle consistency loss
  • 相关文献

参考文献1

二级参考文献6

共引文献4

同被引文献44

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部