期刊文献+

Empirical Likelihood of Quantile Difference with Missing Response When High-dimensional Covariates Are Present

原文传递
导出
摘要 We,in this paper,investigate two-sample quantile difference by empirical likelihood method when the responses with high-dimensional covariates of the two populations are missing at random.In particular,based on sufficient dimension reduction technique,we construct three empirical log-likelihood ratios for the quantile difference between two samples by using inverse probability weighting imputation,regression imputation as well as augmented inverse probability weighting imputation,respectively,and prove their asymptotic distributions.At the same time,we give a test to check whether two populations have the same distribution.A simulation study is carried out to investigate finite sample behavior of the proposed methods too.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第12期1803-1825,共23页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.12071348) National Social Science Foundation of China(Grant No.17BTJ032)。
  • 相关文献

参考文献2

二级参考文献15

  • 1Qin, Y. s., Zhao, L. C.: Empirical likelihood ratio confidence intervals for the differences of quantiles of two populations. Chinese Ann. Math. (Set. A), 18, 687-694 (1997). 被引量:1
  • 2Little, R. J. A., Rubin, D. B.: Statistical analysis with missing data, 2nd edition, John Wiley &: Sons, New York, 2002. 被引量:1
  • 3Wang, Q., Rao, J. N. K.: Empirical likelihood-based inference in linear models with missing data. Scand. J. Statist., 29, 563-576 (2002). 被引量:1
  • 4Wang, Q., Rao, J. N. K.: Empirical likelihood-based inference under imputation for missing response data. Ann. Statist., 30, 896-924 (2002). 被引量:1
  • 5Hartley, H. O., Rao, J. N. K.: A new estimation theory for sample surveys. Biometrika, 55, 547-557 (1968). 被引量:1
  • 6Thomas, D. R., Grunkemeier, G. L.: Confidence interval estimation of survival probabilities for censored data. J. Amer. Statist. Assoc., 70, 865-871 (1975). 被引量:1
  • 7Owen, A. B.: Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249 (1988). 被引量:1
  • 8Owen, A. B.: Empirical likelihood ratio confidence regions. Ann. Statist., 18, 90-120 (1990). 被引量:1
  • 9Rao, J. N. K.: On variance estimation with imputed survey data. J. Amer. Statist. Assoc., 91, 499-520 (1996). 被引量:1
  • 10Chen, J., Rao, J. N. K., Sitter, R. R.: Efficient random imputation for missing data in complex surveys. Statistica Sinica, 10, 1153-1169 (2000). 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部