期刊文献+

航路资源协同分配的多目标优化方法研究 被引量:2

A Multi-objective Optimization Method of Collaborative Allocation of Route Resources
下载PDF
导出
摘要 目前,航班飞行需求激增和恶劣天气已经严重影响到航空空域的正常运行,为此针对空域拥堵时航路的时隙航迹资源协同分配进行了研究。根据问题的数学描述,以总延误成本最低和公平损失偏差系数最低为两个目标,建立了航路资源协同分配模型,运用多目标遗传算法(NSGA-Ⅱ)对模型求解分析。通过航路网络的典型数据测试该模型,生成了可供决策者选择的帕累托最优解集,并与传统RBS算法进行比较,实现平均延误成本降低8.5%,平均公平损失偏差系数降低70.6%。结果证明NSGA-Ⅱ算法可以较好的解决航路资源协同分配的问题。 In airway network, the excess traffic demand and the influence of weather conditions have become the main reasons for airspace traffic congestion. This paper investigated the collaborative allocation of time slots and trajectories during airspace traffic congestion. According to the mathematical description of the problem, we proposed a collaborative allocation model with the minimum total delay cost and the minimum deviation coefficient of fair loss as two objectives. Then a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)was applied to solve the problem. By testing the model with typical data of route network, a Pareto optimal solution set selected by decision makers was generated. Comparing the algorithm with the traditional RBS algorithm, the average delay cost was reduced by 8.5%, and the average fair loss deviation coefficient was reduced by 70.6%. The comparison shows that the NSGA-Ⅱ can be well applied in the research of slots-trajectories collaborative allocation.
作者 杨帆 田文 宋津津 YANG Fan;TIAN Wen;SONG Jin-jin(National Key Laboratory of Air Traffic Flow Management,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210016,China)
出处 《计算机仿真》 北大核心 2021年第11期47-52,共6页 Computer Simulation
基金 国家自然科学基金(71971112) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20190717)。
关键词 空中交通流量管理 帕累托解集 多目标遗传算法 航路资源 协同航迹选择程序 Air traffic flow management Pareto solution set Multi-objective genetic algorithm Route resources Collaborative trajectory options program(CTOP)
  • 相关文献

参考文献4

二级参考文献28

  • 1黄冀卓,王湛,马人乐.一种新的求解约束多目标优化问题的遗传算法[J].计算机工程与应用,2006,42(23):47-51. 被引量:24
  • 2Wardrop J.G. Some theoretical aspects of road traffic research[J]. London: Proceedings of The Institution of Civil Engineers Part II, 1952, 1(2): 325-378. 被引量:1
  • 3Antonio M. Abad, B. Clarke. Using tactical flight level allocation to alleviate airspace corridor congestion[R]. Chicago, Illinois: AIAA, 2004-6456. 被引量:1
  • 4Vossen T, Michael B. Optimization and mediated bartering models for ground delay programs[J]. Naval Research Logistics, 2006, 53(1): 75-90. 被引量:1
  • 5Soomer M J. Scheduling aircraft landings using airlines' preferences[J]. European Journal of Operational Research, 2007 (190): 277-291. 被引量:1
  • 6Sherali H D, Staats R W, Trani A A. An airspace planning and collaborative decision making model: Part II-cost model, data considerations, and computations[J]. Transportation Science, 2006, 40 (2): 147-164. 被引量:1
  • 7Delahaye D, Odoni A. Airspace congestion smoothing by stochastic optimization[C]//Proceedings of the Sixth International Conference on Evolutionary Programming. USA: IEEE 1997: 163-176. 被引量:1
  • 8Delahaye D, Sofiane O, Puechmorel S. Airspace Congestion Smoothing by Multi-objective Genetic Algorithm[C]. USA: ACM Symposium on Applied Computing, 2005:907-912. 被引量:1
  • 9Bertsimas D, Guglielmo L, Odoni A. The air traffic flow management problem: An integer optimization approach[C]//Integer Programming and Combinatorial Optimization. Italy: Springer Berlin/Heidelberg, 2008: 34--46. 被引量:1
  • 10Elefante S. A Strategic and Tactical Tool for ATFM Planning based on Statistics and Probability Theory[C]. USA: 4th USA/Europe Air Traffic Management R&D Seminar, 2001. 被引量:1

共引文献16

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部