期刊文献+

Exploitation of Waste Heat from a Solid Oxide Fuel Cell via an Alkali Metal Thermoelectric Converter and Electrochemical Cycles

下载PDF
导出
摘要 In order to employ the waste heat effectively,a novel three-stage integrated system based upon a solid oxide fuel cell(SOFC),an alkali metal thermoelectric converter(AMTEC)and thermally regenerative electrochemical cycles(TRECs)is put forward.Considering the main electrochemically and thermodynamically irreversible losses,the power output and the efficiency of the subsystems and the integrated system are compared,and optimally operating regions for the current density,the power output,and the efficiency of the integrated system are explored.Calculations demonstrate that the maximum power density of the considered system is up to 7466 W/m2,which allows 18%and 74%higher than that of the conventional SOFC-AMTEC device and the stand-alone fuel cell model,respectively.It is proved that the considered system is an efficient approach to boost energy efficiency.Moreover,the influence of several significant parameters on the comprehensive performance of the integrated system is expounded in detail,including the electrolyte thickness of the SOFC,the leakage resistance of the SOFC,and the area ratio between the SOFC electrode and the AMTEC subsystem.
作者 ZHA Jingjing HUANG Yuewu 查静静;黄跃武(College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China)
出处 《Journal of Donghua University(English Edition)》 CAS 2021年第6期549-556,共8页 东华大学学报(英文版)
  • 相关文献

参考文献1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部