期刊文献+

一种融合光谱差异的空间约束模糊聚类的熵率超像素分割方法 被引量:1

An Entropy Rate Superpixel Segmentation Method Based on Spatially Constrained Fuzzy Clustering Fusion of Spectral Differences
下载PDF
导出
摘要 针对高分辨率遥感影像中传统超像素分割方法存在过分割和边缘分割一致性的问题,选取五景高分辨率遥感影像,提出了一种融合光谱差异的空间约束模糊聚类的熵率超像素分割方法。首先,采用熵率超像素进行过分割,生成超像素过分割区域;然后,分析影像地物的空间信息,对比区域相似性;最后,采用空间约束模糊聚类和光谱差异进行区域合并,获取最终分割影像。定性和定量分析结果表明,该方法改善了过分割问题,能有效提高分割精度,使得分割影像的地物边缘一致性较优。 In view of the high spatial resolution remote sensing image,the traditional superpixel segmentation method has the problem of over-segmentation and edge segmentation consistency.In order to solve this problem,this paper selects five high-resolution remote sensing images and proposes an entropy rate superpixel segmentation method based on spatially constrained fuzzy clustering fusion of spectral differences.Firstly,the entropy rate super pixel is used for over-segmentation to generate regional super pixels.Then,by analyzing the spatial information of the image features,the regional similarity is compared.Finally,the fuzzy clustering model of spatial constraints and spectral differences are combined to obtain the final segmented image.It is analyzed by qualitative and quantitative methods.Experimental results show that this method reduces the problem of over-segmentation,effectively improves the accuracy of segmentation,and makes the edge consistency of the segmented images better.
作者 陈佳旺 王征强 于庆和 CHEN Jiawang;WANG Zhengqiang;YU Qinghe(College of Geomatics,Xi’an University of Science and Technology,Xi’an 710000,China;BaojiSurvey and Mapping Institute,Baoji,Shaanxi 721000,China;Heilongjiang Academy ofForestry Design and Research,Haerbin 150080,China)
出处 《遥感信息》 CSCD 北大核心 2021年第5期74-80,共7页 Remote Sensing Information
基金 国家自然科学基金项目(41501571)。
关键词 过分割 熵率超像素 空间约束模糊聚类 光谱差异 边缘一致性 over-segmentation entropy rate superpixel spatially constrained fuzzy clustering spectral difference edge consistency
  • 相关文献

参考文献9

二级参考文献69

  • 1明冬萍,王群,杨建宇.遥感影像空间尺度特性与最佳空间分辨率选择[J].遥感学报,2008,12(4):529-537. 被引量:67
  • 2陈忠,赵忠明.基于区域生长的多尺度遥感图像分割算法[J].计算机工程与应用,2005,41(35):7-9. 被引量:26
  • 3YAN Yahao, DU Junping, LI Qingping, et al. MULTI-FOCUS IMAGE FUSION ALGORITHM BASED ON NSCT [C]//2012 IEEE 2nd International Conference on Cloud Computing and Intelligent Systems, Hangzhou, China, Oct 30-Nov. 1, 2012, 1: 85-89. 被引量:1
  • 4Cunha L D, ZHOU Jianping, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications [J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(10): 3089-3101. 被引量:1
  • 5LI Qingping, Du Junping, SONG Fuzhao, et al. Region-based Multi-focus Image Fusion Using the Local Spatial Frequency [C]//2013 25th Chinese Control and Decision Conference, Guiyang, China, May 25-27, 2013: 3792-3796. 被引量:1
  • 6REN Xiaofeng, Malik J. Learning a Classification Model for Segmentation [C]// Proceedings of the Ninth IEEE International Conference onComputerVision, Nice, France, October 14-17, 2003, 1: 10-17. 被引量:1
  • 7LIU Mingyu, Tuzel O, Ramalingam S, et al. Entropy Rate Superpixel Segmentation [C]// 2011 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, June 20-25, 2011: 2097-2104. 被引量:1
  • 8Mori G, REN Xiaofeng, Efros AA, et al. Recovering Human Body Configurations: Combining Segmentation and Recognition [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June27-July2, 2004, 2: II-326-II-333. 被引量:1
  • 9Mori G. Guiding Model Search Using Segmentation [C]// Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, October 17-20, 2005, 2: 1417-1423. 被引量:1
  • 10WANG Shu, LU Huchuan, YANG Fan, et al. Superpixel Tracking [C]//2011 IEEE International Conference on Computer Vision, Barcelona, Spain, November6-13, 2011: 1323-1330. 被引量:1

共引文献68

同被引文献17

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部