期刊文献+

Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms 被引量:5

下载PDF
导出
摘要 The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1380-1397,共18页 岩石力学与岩土工程学报(英文版)
基金 funded by the National Natural Science Foundation of China(Grant No.42177164) the Innovation-Driven Project of Central South University(Grant No.2020CX040) supported by China Scholarship Council(Grant No.202006370006)。
  • 相关文献

参考文献10

二级参考文献106

  • 1王新民,段瑜,彭欣.采空区灾害危险度的模糊综合评价[J].矿业研究与开发,2005,25(2):83-85. 被引量:43
  • 2李夕兵,李地元,赵国彦,周子龙,宫凤强.金属矿地下采空区探测、处理与安全评判[J].采矿与安全工程学报,2006,23(1):24-29. 被引量:169
  • 3朱永全,景诗庭,张清.时间序列分析在隧道施工监测中的应用[J].岩石力学与工程学报,1996,15(4):353-359. 被引量:47
  • 4GAO Guo-hua,ZHANG Yong-zhong,ZHU Yu,DUAN Guang-huang.Hybrid Support Vector Machines-Based Multi-fault Classification[J].Journal of China University of Mining and Technology,2007,17(2):246-250. 被引量:11
  • 5JIMENO C L,JIMENO E L,CARCEDO F J A. Drilling and blasting of rocks [M]. Rotterdam: Taylor & Francis US,1995. 被引量:1
  • 6HAMDI E, DU MOUZA J, FLEURISSON J A. Evaluation of the part of blasting energy used for rock mass fragmentation [J]. Fragblast: The International Journal for Blasting and Fragmentation, 2001,5(3): 180-193. 被引量:1
  • 7ALER J, DU MOUZA J, ARNOULD M. Measurement of the fragmentation efficiency of rock mass blasting and its miningapplications [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(2): 125-139. 被引量:1
  • 8MONJEZI M,AMIRI H,FARROKHI A,GOSHTASBI K. Prediction of rock fragmentation due to blasting in Sarcheshmeh copper mine using artificial neural networks [J]. Geotechnical and Geological Engineering,2010,28: 423-430. 被引量:1
  • 9KULATILAKE P H S W,WU Q,HUDAVERDI T,KUZU C. Mean particle size prediction in rock blast fragmentation using neural networks [J]. Engineering Geology,2010,114(3-4): 298-311. 被引量:1
  • 10KUZNETSOV V M. The mean diameter of the fragments formed by blasting rock [J]. Soviet Mining Science,1973,9(2): 144-148. 被引量:1

共引文献157

同被引文献47

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部