摘要
A-caloric逼近技巧在抛物型偏微分方程组弱解的正则性研究中起着至关重要的作用.本文在非交换Heisenberg群上建立一个A-caloric逼近定理,该结果将为研究Heisenberg群中的非线性次椭圆抛物方程组弱解的最优正则性奠定基础.
The technique of A-caloric approximation plays an important part in regularity for parabolic systems.This paper is focused on establishment of A-caloric approximation theorem in non-commutative Heisenberg groups.The results will lay a foundation for studying the optimal regularity of weak solutions to nonlinear sub-elliptic parabolic systems in the Heisenberg group.
作者
廖冬妮
张宗峰
LIAO Dongni;ZHANG Zongfeng(School of Mathematics and Computer Science,Gannan Normal University,Ganzhou 341000,China;School of Artificial Intelligence,Jiangxi University of Applied Science,Nanchang 330100,China)
出处
《赣南师范大学学报》
2021年第6期7-11,共5页
Journal of Gannan Normal University
基金
国家自然科学基金资助项目(12061010,11661006)
江西省自然科学基金资助项目(20202BAB201004)
江西省教育厅科技计划项目(GJJ190741)。