期刊文献+

基于参数化水平集法的材料非线性子结构拓扑优化 被引量:3

Topology Optimization of Nonlinear Material Structures Based on Parameterized Level Set and Substructure Methods
下载PDF
导出
摘要 针对利用传统水平集法进行非线性结构拓扑优化计算过程复杂及计算效率低等问题,将参数化水平集方法引入材料非线性结构拓扑优化中.通过全局径向基函数插值初始水平集函数,建立了以插值系数为设计变量、结构的应变能最小为目标函数、材料用量为约束条件的材料非线性结构拓扑优化模型,利用有限元分析对材料非线性结构建立平衡方程,并用迭代法求解.同时,采用子结构法划分设计区域为若干个子区域,将全自由度平衡方程的求解分解为缩减的平衡方程和多个子结构内部位移的求解,减小了计算成本.算例表明,这种处理非线性关系的方法可以在保证数值稳定的同时提高计算效率,得到边界清晰、结构合理的拓扑优化构形. In order to overcome the problems of complicated calculation process and lower computational efficiency of the traditional level set method(LSM),for nonlinear structure topology optimization,a parameterized level set method(PLSM)was introduced.Through interpolation of the initial level set function with the globally supported radial basis function(GSRBF),a nonlinear material structure topology optimization model was established with the interpolation coefficient as the design variable,the minimum strain energy of the structure as the objective function,and the material amount as the constraint condition.The equilibrium equation for the nonlinear material structure was established by finite element analysis,and solved with the iterative method.In addition,the substructure method(i.e.the domain decomposition method)was used to divide the design area into several sub-areas,and the solution to the full degree of freedom equilibrium equation was decomposed into a set of solutions of reduced equilibrium equations and solutions of multiple substructures'internal displacements,which could reduce the computation cost.Examples show that,this method can ensure the numerical stability,improve the computational efficiency,and obtain the topology optimization configuration with clear boundaries and reasonable structures.
作者 雷阳 封建湖 LEI Yang;FENG Jianhu(School of Sciences 9 Chang1 an University,XVan 710064,P.R.China)
机构地区 长安大学理学院
出处 《应用数学和力学》 CSCD 北大核心 2021年第11期1150-1160,共11页 Applied Mathematics and Mechanics
基金 陕西省自然科学基金(2018JQ1027) 中央高校基本科研业务费(300102120107)。
关键词 拓扑优化 参数化水平集法 非线性材料 子结构法 topology optimization parameterized level set method nonlinear material substructure method
  • 相关文献

参考文献5

二级参考文献37

  • 1张洪武,张盛,毕金英.周期性结构热动力时间-空间多尺度分析[J].力学学报,2006,38(2):226-235. 被引量:5
  • 2OSHER S,SETHIAN J A.Fronts Propagating with Curvature-dependent Speed:Algorithm Based on Hamilton-Jacobi Formulations[J].Journal of Computational Physics,1988,79 (1):12-49. 被引量:1
  • 3SETHIAN J A.Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry,Fluid Mechanics,Computer Vision and Materials Science[M].Cambridge:Cambridge University Press,1999. 被引量:1
  • 4SETHIAN J A,WIEGMANN A.Structural Boundary Design via Level Set and Immersed Interface Methods[J].Journal of Computational Physics,2000,163 (2):489-528. 被引量:1
  • 5SANTOSA S J,OSHER F.Level Set Methods for Optimization Problems Involving Geometry and Constraints I.Frequencies of a Two-density Inhomogeneous Drum[J].Journal of Computational Physics,2001,171(1):272-288. 被引量:1
  • 6WANGM Y,WANG X M,GUO D M.A Level Set Method for Structural Topology Optimizations[J].Computer Methods in Applied Mechanics and Engineering,2003,192(1/2):227-246. 被引量:1
  • 7ESCHENAUER H A,KOBELEV V V,SCHUMACHER A.Bubble Method for Topology and Shape Optimization of Structures[J].Structural and Multidisciplinary Optimization,1994,8 (1):42-51. 被引量:1
  • 8SOKOLOWSKI J,ZOCHOWSKI A.On the Topological Derivative in Shape Optimization[J].SIAM Journal on Control and Optimization,1999,37 (4):1251-1272. 被引量:1
  • 9SOKOLOWSKI J,ZOCHOWSKI A.Topological Derivatives for Elliptic Equations[J].Inverse Problems,1999,15(1):123-134. 被引量:1
  • 10ROUET-LEDUC B, BARROS K, CIEREN E, et al. Spatial adaptive sampling in multiscale simulation [J]. Computer Physics Communications, 2014, 185 (7) : 1857-1864. 被引量:1

共引文献11

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部