摘要
为了获得新型锆基非晶活性材料在动态加载条件下的力学性能及本构关系,采用压力渗透铸造法制备得到锆基非晶活性材料样品,借助分离式霍普金森压杆实验测量系统对其进行了不同应变率加载条件下的动态压缩实验,获得了应变率在300~1600 s^(-1)范围内材料的应力⁃应变曲线,利用高速摄影观察记录了不同应变率条件下试件的破碎以及释能过程。结果表明:锆基非晶活性材料性能表现为脆性材料特征,应力⁃应变曲线不存在屈服阶段,且当应变率由947 s^(-1)上升至1587 s^(-1)时,材料抗压强度由2.71 GPa上升至2.78 GPa,增幅较小,约为2.6%,而断裂应变由0.032下降至0.028,下降12.5%;材料的破碎程度以及释能反应现象随应变率增加较为明显,当加载应变率较大时,材料破碎过程中存在应变软化现象;根据实验数据,拟合得到了锆基非晶活性材料断裂失效前的一维弹脆性损伤动态本构方程。
In order to acquire the mechanical properties and constitutive relations of Zr⁃based amorphous reactive material under dynamic loading,the specimens were made by pressure infiltration casting,and the dynamic compression experiments under loading with different stain rates were conducted with the split Hopkinson bar(SHPB)test system.The stress⁃strain curves were acquired under different strain rates of 300^(-1)600 s^(-1),and a high⁃speed camera was used to record the fracture and energy output process of the specimens under different strain rates.Results show that the Zr⁃based amorphous reactive material belongs to brit⁃tle materials that no yielding stage exists in stress⁃strain curves.With the increase of strain rates from 947 s^(-1)to 1587 s^(-1),the com⁃pressive strength of materials increases from 2.71 GPa to 2.78 GPa with a small increase of 2.6%,while the fracture strain de⁃creases from 0.032 to 0.028 with a decrease of 12.5%.The degree of fracture and reaction of the specimen is more evident with higher strain rate and the strain softening phenomenon occurred during the fracture of materials.According to experimental data,a one⁃dimensional elasto⁃brittle constitutive model with damage was fitted for the Zr⁃based amorphous reactive material before the fracture failure of specimens.
作者
罗普光
毛亮
魏晨杨
姜春兰
卢士伟
李杰
LUO Pu-guang;MAO Liang;WEI Chen-yang;JIANG Chun-lan;LU Shi-wei;LI Jie(Beijing Institute of Space Long March Vehicle,Beijing 100076,China;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China;Shanxi Jiangyang Chemical Co.,Ltd,Taiyuan 030041,China)
出处
《含能材料》
EI
CAS
CSCD
北大核心
2021年第12期1176-1181,共6页
Chinese Journal of Energetic Materials