期刊文献+

地铁车载单目摄像机下异物侵限检测方法探究 被引量:1

On detection method of foreign object intrusion into subway track through in-vehicle monocular camera
下载PDF
导出
摘要 地铁运营对轨行区界限具有非常高的要求,异物侵限对地铁运营会造成严重后果。现有研究方法大多为接触式或固定区域非接触式,这类方法无法对整条线路进行实时检测。针对该问题,提出了一种车载单目摄像机视野环境下异物侵限检测方法,即通过车载摄像机实时获取列车前方视野,利用改进的canny算法和霍夫直线检测算法确定轨行区形成感兴趣区域,并通过YOLO_v3深度神经网络实现对轨行区异物入侵检测。实验证明,该方法可有效提高检测效率和准确性。 Subway operation has a very high requirement for the boundaries of the track area,and foreign object intrusion can cause serious consequences.Most of the existing research methods are through contact detection or non-contact detection in fixed area,which cannot detect the whole track in real time.To address this problem,it proposes a method to detect foreign object intrusion through in-vehicle monocular camera,that is to capture the view in front of the train in real time through the in-vehicle camera,and use the improved Canny algorithm and the Hough linear detection algorithm to determine the track area and identify the area of interest,and realize the detection of foreign object intrusion in the track area by YOLO_v3 deep neural network.It is proved by experiments that this method can effectively improve the detection efficiency and accuracy.
作者 谭飞刚 Tan Feigang(School of Transportation and Environment,Shenzhen Institute of Information technology,Shenzhen,Guangdong,China 518172)
出处 《深圳信息职业技术学院学报》 2021年第5期71-76,共6页 Journal of Shenzhen Institute of Information Technology
基金 2021年广东省科技创新战略专项资金项目(项目编号:pdjh2021b0907) 广东省普通高校青年创新人才项目(项目编号:2020KQNCX205)。
关键词 车载单目摄像机 异物检测 侵限检测 地铁异物侵限 地铁轨行区 in-vehicle monocular camera foreign object intrusion intrusion detection foreign object intrusion into subway track subway track area
  • 相关文献

参考文献7

二级参考文献39

  • 1吴艳华,何峰林,王富章,李平.基于灾害风险评估模型的铁路灾害监测预警系统研究[J].中国铁道科学,2012,33(1):121-125. 被引量:13
  • 2Clements Mair, Dr Saeed Fararooy. Practice and potential of computer vision for railways[ C]. Condition Monitoringtbr Rail Transport. lEE Seminar, 1998 Nov. 10. 被引量:1
  • 3Jun Xue,Jun Cheng,Li Wang,et al. Visual monitoring- based railway grade crossing surveillance system [C]. 2008 Congress on Image and Signal Processing, 2008. 被引量:1
  • 4Susumu Kubnta, Tsuyoshi Nakano, Yasukazu Okamoto. A global optimization algorithm for Real-time On-board stereo obstacle detection systems [C].Proceedings of the 2007 IEEE Intelligent Vehicles Symposium lstanbul, Turkey, 2007, June 13-15. 被引量:1
  • 5-dayuki 'l-ugawa. Vision-based vehicles in Japan : Machine vision systems and driving control systems [J].IEEE Transactions on Industrial Electronics, 1994 vol. 41, August, 4. 被引量:1
  • 6Fatih Kaleli, Yusuf Sinan Akgul. Vision-based railroad track extraction using dynamic programming [ C ]. Proceedings of the 12th International IEEE Conference on intelligent Transportation Systems, 2009, Oct. 3-7. 被引量:1
  • 7Milan Ruder, Nikolaus Mohler, Faruque Ahmed. Anobstacle detection system [or automated train5[C]. Intelligent Vehicles Symposium, 2003. 被引量:1
  • 8Maneesha Singh, Sameer Singh, Jay Jaiswal, el al. Autonomous rail track inspection using vision based system [ C ]. IEEE International Conference on Computational Intelligence Ibr Homeland Securily and Personal S',dety[ CI. 2006, Oct. 16-17. 被引量:1
  • 9Canny J. A computational approach to e(Jge deteclJon [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, 8(6) : 679-698. 被引量:1
  • 10R Deriche. Using Canny's criteria to derive a recursively implemented optimal edge detector[J]. Computer Vision, 1987 Vol. 1, April, 167 187. 被引量:1

共引文献54

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部