期刊文献+

基于聚类信息和对称非负矩阵分解的链路预测模型研究 被引量:5

Link prediction model based on clustering information and symmetric non-negative matrix factorization
下载PDF
导出
摘要 现有的大部分基于非负矩阵分解的链路预测方法仅考虑网络拓扑结构信息而忽略节点与链接聚类信息。针对此问题,提出一个融合聚类信息的对称非负矩阵分解的链路预测模型。首先,该模型利用对称非负矩阵分解去捕获网络节点相似度信息;其次,使用基于Jaccard的节点和链接聚类系数去保持网络局部结构信息;最后,启用拉格朗日乘法规则去学习模型参数。在六个真实无向无权和四个加权网络上的实验结果表明,该方法在两种不同类型网络预测精确度分别提升了1.6%和8.9%。 Most existing link prediction methods based on non-negative matrix factorization only consider network topology information and ignore node and link clustering information.To solve this problem,this paper proposed a link prediction model based on symmetric non-negative matrix factorization with clustering information.Firstly,the model used symmetric non-negative matrix factorization to capture the similarity information of network nodes.Secondly,it used the node and link clustering coefficients based on Jaccard to keep the local structure information of the network.Finally,it enabled the Lagrange multiplication rule to learn the model parameters.Experimental results on six real undirected unweighted networks and four weighted networks show that the prediction accuracy of this method on two different types of networks is improved by 1.6%and 8.9%,respectively.
作者 陈广福 王海波 Chen Guangfu;Wang Haibo(College of Mathematics&Computer Science,Wuyi University,Wuyishan Fujian 354300,China;College of Electronic&Information Engineering,Hunan University of Science&Engineering,Yongzhou Hunan 425199,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第12期3733-3738,共6页 Application Research of Computers
基金 武夷学院引进人才科研启动基金资助项目(YJ202017)。
关键词 复杂网络 链路预测 对称非负矩阵分解 节点和链接聚类信息 complex network link prediction symmetric non-negative matrix factorization node and link clustering information
  • 相关文献

参考文献4

二级参考文献141

  • 1Aiello L M, Barrat A, Schifanella R, et al. Friendship prediction and homophily in social media. ACM Trans Web, 2012, 6: 9. 被引量:1
  • 2Mori J, Kajikawa Y, Kashima H, et al. Machine learning approach for finding business partners and building reciprocal relationships. Expert Syst Appl, 2012, 39: 10402-10407. 被引量:1
  • 3Wu S, Sun J, Tang J. Patent partner recommendation in enterprise social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM'13), Rome, 2013. 43-52. 被引量:1
  • 4Akcora C G, Carminati B, Ferrari E. Network and profile based measures for user similarities on social networks. In: Proceedings of the 12th IEEE International Conference on Information Reuse and Integration, Las Vegas, 2011. 292-298. 被引量:1
  • 5Tang J, Wu S, Sun J M, et al. Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), Beijing, 2012. 1285-1293. 被引量:1
  • 6Pavlov M, Ichise R. Finding experts by link prediction in co-authorship networks. In: Proceedings of the 2nd International ISWC+ASWC Workshop on Finding Experts on the Web with Semantics (FEWS), Busan, 2007. 42-55. 被引量:1
  • 7Wohlfarth T, Ichise R. Semantic and event-based approach for link prediction. In: Proceedings of the 7th International Conference on Practical Aspects of Knowledge Management (PAKM'08), Yokohama, 2008. 50-61. 被引量:1
  • 8Raeder T, Lizardo O, Hachen D, et al. Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc Netw, 2011, 33: 245-257. 被引量:1
  • 9Marchette D J, Priebe C E. Predicting unobserved links in incompletely observed networks. Comput Stat Data Anal, 2008, 52: 1373-1386. 被引量:1
  • 10Kim M, Leskovec J. The network completion problem: inferring missing nodes and edges in networks. In: Proceedings of the 11th SIAM International Conference on Data Mining (SDM'11), Mesa, 2011. 47-58. 被引量:1

共引文献76

同被引文献26

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部