摘要
飞机线束是航电设备互联系统的重要组成部分,线束成品的可靠性会影响飞机的正常工作。因而在线束制造过程中,对组成线束的导线严格按照工艺文件开展布线任务是保证线束质量的重要环节。为提升布线工艺引导的数字化水平,对线束图纸中组成线束的导线进行准确的轨迹识别是关键技术之一。介绍一种不依赖AutoCAD系统及其二次开发工具的方法,对DWG格式图纸的数据解析进行了研究,在符合预先设定好的识图规则以及位置容差的条件下,筛选出有效的实体数据,结合接线表中的布线工艺数据,最终达到可以自动识别线束图纸中的导线轨迹,引导工程师正确敷设导线的目的。基于开发的飞机线束生产数字化工艺引导系统,进行了9组实物实验。对于轨迹段数量大于50的冗杂型导线轨迹,仍可以在1秒内完成导线轨迹的自动识别,且未出现严重的轨迹识别错误。同等条件下,传统的人工识图需要5到15分钟完成轨迹查找,并且失误率较高。实验结果表明,这种新的识别方法大幅度提高了导线轨迹识别效率和准确率。
Aircraft wiring harness is an important part of the avionics interconnection system.The reliability of the finished wiring harness will affect the normal operation of the aircraft.Therefore,in the wire harness manufacturing process,to carry out wiring tasks for the wires that make up the wire harness in strict accordance with the process documents is an important part of ensuring the quality of the wire harness.In order to improve the digital level of wiring process guidance,accurate trajectory identification of the wires that make up the wiring harness in the wiring harness drawing is one of the key technologies.In this paper,a method is introduced that didn’t rely on the AutoCAD system and its secondary development tools.The data analysis of DWG format drawings is studied.Under the conditions of pre-set drawing rules and position tolerances,the effective physical data is combined with the wiring process data in the wiring table.Finally,the goal of automatically identifying the wire trajectory in the wiring harness drawing and guiding the engineer to lay the wire correctly is achieved.Compared with the traditional manual image reading,this new recognition method reduced the repetitive work and the error rate of finding the trajectory of the wire;and the feasibility of the method is verified through practical application.
作者
李明
于正林
王阳娜
程人南
李林
LI Ming;YU Zhenglin;WANG Yangna;CHENG Rennan;LI Lin(School of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130022;Chongqing Research Institute,Changchun University of Science and Technology,Chongqing 401122)
出处
《长春理工大学学报(自然科学版)》
2021年第6期60-67,共8页
Journal of Changchun University of Science and Technology(Natural Science Edition)
基金
国家重点研发计划(2019YFB1707505)。