期刊文献+

双环图上的唯一性及其重构

Uniqueness and Reconstruction of the Double Loop Graph
原文传递
导出
摘要 本文研究带双环图上的Sturm-Liouville微分算子反问题,该算子在内部顶点处满足标准匹配条件.在求得特征值渐进式的基础上,通过子谱构成的向量函数系的完备性及其Riesz基性质重构未知势函数,并且给出解的唯一性定理和重构算法. We provide a method for solving inverse Sturm-Liouville problem on the double loop graph.We deduce asymptotic of eigenvalues for double loop graph with the standard matching condition at the contact vertex,and then reconstruct the unknown potential by the Riesz basis constructed from the subspectrum,and finally present the uniqueness theorem and reconsbruction algorithm.
作者 官声玉 杨传富 Murat SAT Sheng Yu GUAN;Chuan Fu YANG;Murat SAT(School of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;Faculty of Art and Sciences,Department of Mathematics,Erzincan University,Erzincan,Turkey)
出处 《数学学报(中文版)》 CSCD 北大核心 2021年第6期991-998,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11871031) 江苏省自然科学基金资助项目(BK20201303)。
关键词 部分反问题 STURM-LIOUVILLE算子 双环图 标准匹配条件 RIESZ基 partial inverse spectral problem Sturm-Liouville operator double loop graph standard matching condition Rieszbasis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部